Skip to main content

Modifying Directionality through Auditory System Scaling in a Robotic Lizard

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

The peripheral auditory system of a lizard is strongly directional. This directionality is created by acoustical coupling of the two eardrums and is strongly dependent on characteristics of the middle ear, such as interaural distance, resonance frequency of the middle ear cavity and of the tympanum. Therefore, directionality should be strongly influenced by their scaling. In the present study, we have exploited an FPGA–based mobile robot based on a model of the lizard ear to investigate the influence of scaling on the directional response, in terms of the robot’s performance in a phonotaxis task. The results clearly indicate that the model’s frequency response scales proportionally with the model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen-Dalsgaard, J.: Directional hearing in nonmammalian tetrapods. In: Popper, A.N., Fay, R.R. (eds.) Sound Source Localization. Springer Handbook of Auditory Research, vol. 25, pp. 67–123. Springer, New York (2005)

    Chapter  Google Scholar 

  2. Wever, E.G.: The Reptile Ear: Its Structure and Function. Princeton University Press, Princeton (1978)

    Google Scholar 

  3. Christensen-Dalsgaard, J., Manley, G.A.: Acoustical coupling of lizard eardrums. JARO-Journal of the Association for Research in Otolaryngology 9(4), 407–416 (2008)

    Article  Google Scholar 

  4. Christensen-Dalsgaard, J., Manley, G.A.: Directionality of the lizard ear. Journal of Experimental Biology 208(6), 1209–1217 (2005)

    Article  Google Scholar 

  5. Klump, G.M.: Sound localization in birds. In: Dooling, R.J., Fay, R.R., Popper, A.N. (eds.) Comparative Hearing: Birds and Reptiles. Springer Handbook of Auditory Research, vol. 13, pp. 249–307. Springer, Heidelberg (2000)

    Google Scholar 

  6. Michelsen, A., Popov, A., Lewis, B.: Physics of directional hearing in the cricket Gryllus bimaculatus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 175(2), 153–164 (1994)

    Article  Google Scholar 

  7. Michelsen, A.: Biophysics of sound localization in insects. In: Hoy, R.R., Popper, A.N., Fay, R.R. (eds.) Comparative Hearing: Insects. Springer Handbook of Auditory Research, vol. 10, pp. 18–62. Springer, Heidelberg (1998)

    Google Scholar 

  8. Zhang, L., Hallam, J., Christensen-Dalsgaard, J.: Modelling the peripheral auditory system of lizards. In: Nolfi, S., Baldassarre, G., Calabretta, R., Hallam, J.C.T., Marocco, D., Meyer, J.-A., Miglino, O., Parisi, D. (eds.) SAB 2006. LNCS (LNAI), vol. 4095, pp. 65–76. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Shaikh, D., Hallam, J., Christensen-Dalsgaard, J., Zhang, L.: A braitenberg lizard: Continuous phonotaxis with a lizard ear model. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5602, pp. 439–448. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Shaikh, D., Hallam, J., Christensen-Dalsgaard, J.: Control of a braitenberg lizard in a phonotaxis task with decision models. In: Kyriacou, T., Nehmzow, U., Melhuish, C., Witkowski, M., (eds.): Technical Report Series: Proceedings of Towards Autonomous Robotic Systems, University of Ulster, Intelligent Systems Research Centre, University of Ulster, pp. 48–54 (2009)

    Google Scholar 

  11. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  12. Fletcher, N.H.: Acoustic Systems in Biology. Oxford University Press, USA (1992)

    Google Scholar 

  13. Fletcher, N.H., Thwaites, S.: Physical models for the analysis of acoustical systems in biology. Quarterly Reviews of Biophysics 12(1), 25–65 (1979)

    Article  Google Scholar 

  14. Heffner, H.E., Heffner, R.S.: Hearing. Comparative Psychology: A Handbook, pp. 290–303 (1998)

    Google Scholar 

  15. Heffner, H.E., Heffner, R.S.: High-frequency hearing. The Senses: A Comprehensive Reference. Audition 3, 55–60 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shaikh, D., Hallam, J., Christensen-Dalsgaard, J. (2010). Modifying Directionality through Auditory System Scaling in a Robotic Lizard. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics