The Approach Behaviour of the Hawkmoth Manduca sexta toward Multi-modal Stimuli: A Simulation Model

  • Anna Balkenius
  • Marie Dacke
  • Christian Balkenius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6226)


We present two models of the behaviour of the hawkmoth Manduca sexta when it approaches an artificial flower with an olfactory, visual or multimodal cue. The first model treats each condition separately while the second model combines both types of sensory cues in a single model. Both models reproduce several characteristic properties of the hawkmoth behaviour including its goal direction and velocity profile for different stimulus types. In addition, the second model accounts for the interaction between visual and olfactory cues.


Mushroom Body Foreground Pixel Active Shape Model Odour Stimulus Circular Arena 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersson, S., Dobson, H.E.: Behavioral foraging responses by the butterfly eliconius melpomene to Lantana camara floral scent. J. Chem. Ecol. 29, 2302–2318 (2003)Google Scholar
  2. 2.
    Balkenius, A., Rosén, W., Kelber, A.: The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. J. Comp. Physiol. A 192(4), 431–437 (2006)CrossRefGoogle Scholar
  3. 3.
    Stein, B., Stanford, T.: Multisensory integration: current issues from the perspective of the single neuron. Nature Reviews Neuroscience 9(4), 255–266 (2008)CrossRefGoogle Scholar
  4. 4.
    Balkenius, A., Kelber, A.: Colour preferences influences odour learning in the hawkmoth, Macroglossum stellatarum. Naturwissenschaften 93(5), 255–258 (2006)CrossRefGoogle Scholar
  5. 5.
    Balkenius, A., Bisch-Knaden, S., Hansson, B.: Interaction of visual and odour cues in the mushroom body of the hawkmoth manduca sexta. J. Exp. Biol. 212, 535–541 (2009)CrossRefGoogle Scholar
  6. 6.
    Braitenberg, V.: Vehicles. MIT Press, Cambridge (1984)Google Scholar
  7. 7.
    Biró, Z., Ziemke, T.: Evolution of visually-guided approach behavior in recurrent artificial neural network robot controllers. In: Pfeifer, R., Blumberg, B., Meyer, J. (eds.) From animals to animats 5: proceedings of the Fifth International Conference on Simulation of Adaptive Behavior, pp. 73–77. MIT Press, Cambridge (1998)Google Scholar
  8. 8.
    Grasso, F., Consi, T., Mountain, D., Atema, J.: Locating odor sources in turbulence with a lobster inspired robot. In: Maes, P., Matarik, M., Meyer, J.A., Pollack, J., Wilson, S.W. (eds.) From Animals to Animats 4, vol. 4, pp. 104–112. MIT Press, Cambridge (1996)Google Scholar
  9. 9.
    Webb, B.: Robots, crickets and ants: models of neural control of chemotaxis and phonotaxis. Neural Networks 11(7-8), 1479–1496 (1998)CrossRefGoogle Scholar
  10. 10.
    Webb, B.: Spiking neuron controllers for a sound localising robot. Dynamical Systems, Wave-Based Computation and Neuro-Inspired Robots, 119–130 (2008)Google Scholar
  11. 11.
    Balkenius, A., Dacke, M.: Flight behaviour of the hawkmoth manduca sexta toward unimodal and multimodal targets. (submitted, 2010)Google Scholar
  12. 12.
    Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice Hall PTR, Englewood Cliffs (1998)Google Scholar
  13. 13.
    Raguso, R., Pichersky, E.: A day in the life of a linalool molecule: chemical communicaion in a plant-pollinator system. Plant Species Biol. 14, 95–120 (1999)CrossRefGoogle Scholar
  14. 14.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Fort Colins, CO, vol. 2 (1999)Google Scholar
  15. 15.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience Publication, Hoboken (2000)Google Scholar
  16. 16.
    Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)CrossRefGoogle Scholar
  17. 17.
    Balkenius, A., Kelber, A., Balkenius, C.: Simulations of learning and behaviour in the hawkmoth deilephila elpenor. In: ICSAB: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 85–92. MIT Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Anna Balkenius
    • 1
  • Marie Dacke
    • 2
  • Christian Balkenius
    • 3
  1. 1.Chemical Ecology GroupSwedish University of Agricultural SciencesAlnarpSweden
  2. 2.Vision GroupLund UniversityLundSweden
  3. 3.Lund University Cognitive ScienceLundSweden

Personalised recommendations