Vertical Structure of Wind-Induced Currents in Homogeneous and Stratified Waters

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


In this chapter the intention is to describe the vertical and (eventually) also horizontal structure of the horizontal current in lakes which are subjected to external wind forces. The water will be assumed to be homogeneous or stratified in two layers, and the internal friction and the effects of the rotation of the Earth will play an important role in the establishment of the current distribution.


Wind Stress Eddy Viscosity Surface Shear Stress Horizontal Current Horizontal Pressure Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abramowitz, M. and Stegun, I.A. (eds.): Handbook of Mathematical Functions. Dover, New York, NY (1965)Google Scholar
  2. 2.
    Bonham-Carter, G. and Thomas, J.H.: Numerical calculation of steady wind-driven currents in Lake Ontario and the Rochester embayment. Proceedings of 16th Conference on Great Lakes Research International Association Great Lakes Research, 640–662 (1973)Google Scholar
  3. 3.
    Bowden, K.F., Fairbairn, L.A. and Hughes, P.: The distribution of shearing stresses in a tidal current. Geophys. J. R. Astr. Soc. 2, 288–305 (1959)CrossRefGoogle Scholar
  4. 4.
    Bye, J.A.T.: Wind-driven circulation in unstratified lakes. Limnol. Oceanogr. 10, 451–458 (1965)CrossRefGoogle Scholar
  5. 5.
    Csanady, G.T.: Mean circulation in shallow seas. J. Geophys. Res. 81, 5389–5399 (1976)CrossRefGoogle Scholar
  6. 6.
    Csanady, G.T.: Turbulent interface layers. J. Geophys. Res. 83, 2329–2342 (1978)CrossRefGoogle Scholar
  7. 7.
    Csanady, G.T.: A developing turbulent surface shear layer model. J. Geophys. Res. 84, 4944–4948 (1979)CrossRefGoogle Scholar
  8. 8.
    Csanady, G.T.: The evolution of a turbulent Ekman layer. J. Geophys. Res. 85, 1537–1547 (1980)CrossRefGoogle Scholar
  9. 9.
    Csanady, G.T.: Circulation in the Coastal Ocean. D. Reidel, Dordrecht, 245 p. (1982)Google Scholar
  10. 10.
    Defant, A.: Physical Oceanography. Vol. 1, Oxford, Pergamon (1961)Google Scholar
  11. 11.
    Dombroklonskiy, S.V.: Drift current in the sea with an exponentially decaying eddy viscosity coefficient. Oceanology 9, 19–25 (1969)Google Scholar
  12. 12.
    Ekman, V.W.: On the influence of the Earth’s rotation on the ocean currents. Ark. Mat. Astr. Fys. 2(11), 1–52 (1905)Google Scholar
  13. 13.
    Ellison, T.H.: Atmospheric turbulence. In: Surveys in Mechanics (eds. Batchelor G.K. and Davies R.M.), Cambridge University Press, Cambridge, 400–430 (1956)Google Scholar
  14. 14.
    Fischer, G.: Ein numerisches Verfahren zur Errechnung von Windstau und Gezeiten in Randmeeren. Tellus 11, 60–76 (1959)CrossRefGoogle Scholar
  15. 15.
    Fjeldstad, J.D.: Ein Beitrag zur Theorie der winderzeugten Meeresströmungen. Gerlands Beitr. Geophys. 23, 237–247 (1930)Google Scholar
  16. 16.
    Foristall, G.Z.: Three-dimensional structure of storm-generated currents. J. Geophys. Res. 79, 2721–2729 (1974)CrossRefGoogle Scholar
  17. 17.
    Foristall, G.Z.: A two-layer model for Hurricane-driven currents on an irregular grid. J. Phys. Oceanogr. 9, 1417–1438 (1980)CrossRefGoogle Scholar
  18. 18.
    Foristall, G.Z., Hamilton, R.C. and Cardone, V.J.: Continential shelf currents in tropical storm Delia: Observations and theory. J. Phys. Oceanogr. 7, 2714–2723 (1974)Google Scholar
  19. 19.
    Gedney, R.T.: Numerical Calculations of Wind-Driven Currents in Lake Erie. Ph.D. Thesis, Case Western Reserve University, Cleveland, OH (1971)Google Scholar
  20. 20.
    Gedney, R.T. and Lick, W.: Wind driven currents in Lake Erie. J. Geophys. Res. 77, 2714–2723 (1972)CrossRefGoogle Scholar
  21. 21.
    Goldstein, S.: Tidal motion in rotating elliptical basins of constant depth. Mon. Notices R. Astron. Soc. (Geophys. Suppl.) 2, 213–231 (1929)CrossRefGoogle Scholar
  22. 22.
    Hayford, J.F.: Effects of Wind and of Barometric Pressures on the Great Lakes. Carnegie Institution of Washington, Washington, DC, 133 p. (1922)Google Scholar
  23. 23.
    Heaps, N.S.: Vertical structure of current in homogeneous and stratified waters. In: Hydrodynamics of Lakes. CISM Lectures No 286 (ed. Hutter, K.), Springer, New York, NY, 152–207 (1984)Google Scholar
  24. 24.
    Heaps, N.S. and Jones, J.E.: Development of a three-layered spectral model for the motion of a stratified sea. II. Experiments with a rectangular basin representing the Celtic Sea. In: Physical Oceanography of Coastal and Shelf Seas. (ed. Johns, B.), Elsevier, Amsterdam, 401–465 (1984)Google Scholar
  25. 25.
    Hellström, B.M.O.: Wind Effects on Lakes and Rivers. Ingenirsvetenskaps-akademien, Handingar 158. 191 p. (1941)Google Scholar
  26. 26.
    Hidaka, K.: Non-stationary ocean currents. Mem. Imp. Mar. Obs., Kobe 5, 141–266 (1933)Google Scholar
  27. 27.
    Hunt Ira, A., Jr.: Wind, Wind Set-up and Seiches on Lake Erie, Part 2. US Corps of Engineers, Lake Survey, 58 p. (1959)Google Scholar
  28. 28.
    Irish, S.M. and Platzman, G.W.: An investigation of meteorological conditions associated with extreme wind tides on Lake Erie. Mon. Wea. Rev. 90, 39–47 (1962)CrossRefGoogle Scholar
  29. 29.
    Jelesnianski, C.P.: Bottom stress time history in linearized equations of motion for storm surges. Mon. Weather Rev. 98, 462–478 (1967)CrossRefGoogle Scholar
  30. 30.
    Keulegan, G.H.: Hydrodynamic effects of gales on Lake Erie. J. Res. Natl. Bur. Stand. 50, 99–109 (1953)CrossRefGoogle Scholar
  31. 31.
    Kielmann, J. and Kowalik, Z.: A bottom stress formulation for storm surge problems. Oceanol. Acta 3, 51–58 (1980)Google Scholar
  32. 32.
    Lacomb, H.: Cours d’ Oceanographie Physique. Gauthier-Villars, Paris (1965)Google Scholar
  33. 33.
    Lai, R.Y.S. and Rao, D.B.: Wind drift currents in deep sea with variable eddy viscosity. Arch. Met. Geophys. Bioklim A25, 131–140 (1976)CrossRefGoogle Scholar
  34. 34.
    Lamb, H.: Hydrodynamics (6th Edition). Cambridge University Press, Cambridge (1932)Google Scholar
  35. 35.
    Laska, M.: Characteristics and modelling of physical limnology processes. Mitt. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH Zürich, Nr. 54, 1–230 (1981)Google Scholar
  36. 36.
    Madsen, O.S.: A realistic model of the wind-induced Ekman boundary layer. J. Phys. Oceanogr. 7, 248–255 (1977)CrossRefGoogle Scholar
  37. 37.
    Miles, J.W.: On the stability of heterogeneous shear flows. Fluid Mech. 10, 496–508 (1967)CrossRefGoogle Scholar
  38. 38.
    Mortimer, C.H.: Motion in thermoclines. Verh. Internat. Verein. Limnol. 14, 79–83 (1961)Google Scholar
  39. 39.
    Mortimer, C.H.: Lake hydrodynamics. Verh. Internat. Verein. Limnol. 20, 124–197 (1974)Google Scholar
  40. 40.
    Munk, W.H. and Andersen, E.R.: Notes on a theory of the thermocline. J. Mar. Res. 7, 276–295 (1948)Google Scholar
  41. 41.
    Nomitsu, T.: Coast effect upon the ocean current and the sea level. Memoirs, College of Science, Kyoto Imperial University (Series A). I. (with T. Takegami) Steady state, 17, 93–141, II. Changing state, 17, 249–280 (1934)Google Scholar
  42. 42.
    Pearce, B.R. and Cooper, C.K.: Numerical circulation model for wind induced flow. J. Hydraul. Div. Am. Soc. Civ. Engrs: 107(HY3), 285–302 (1981)Google Scholar
  43. 43.
    Platzman, G.W.: The dynamic prediction of wind tides on Lake Erie. Meteorol. Monographs, Am. Meteorol. Soc. 4(26), 44 p. (1963)Google Scholar
  44. 44.
    Pond, S. and Pickard, G.L.: Introductory Dynamic Oceanography. Pergamon Oxford, (1978)Google Scholar
  45. 45.
    Prandtl, L.: Neuere Ergebnisse der Turbulenzforschung. Zeitschrift VDI 77, 105–113 (1933)Google Scholar
  46. 46.
    Proudman, J.: Dynamical Oceanography. Methuen, London, (1953)Google Scholar
  47. 47.
    Ramming, H.-G. and Kowalik, Z.: Numerical Modelling of Marine Hydrodynamics. Elsevier, Amsterdam (1980)Google Scholar
  48. 48.
    Rao, D.B.: Free gravitational oscillations in rotating rectangular basins. J. Fluid Mech. 25, 523–555 (1966)CrossRefGoogle Scholar
  49. 49.
    Svensson, U.: Ph.D. Thesis (1979), see in Heaps [24]Google Scholar
  50. 50.
    Sverdrup, H.U., Johnson, M.M. and Fleming, R.H.: The Oceans, their Physics, Chemistry and Biology. Prentice Hall, New York NY, (1946)Google Scholar
  51. 51.
    Thomas, J.H.: A theory of steady wind-driven currents in shallow water with variable eddy viscosity. J. Phys. Oceanogr. 5, 136–142 (1975)CrossRefGoogle Scholar
  52. 52.
    Welander, P.: Wind action on a shallow sea: some generalizations of Ekman’s theory. Tellus 9, 45–52 (1957)CrossRefGoogle Scholar
  53. 53.
    Wilson, B.W.: Note on surface wind stress over water at low and high wind speeds. J. Geophys. Res. 65, 3377–3382 (1960)CrossRefGoogle Scholar
  54. 54.
    Witten, A.J. and Thomas, J.H.: Steady wind driven currents in a large lake with depth-dependent eddy viscosity. J. Phys. Oceanogr. 6, 85–92 (1976)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.ETH Zürich, c/o Versuchsanstalt für Wasserbau Hydrologie und GlaziologieZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  3. 3.Russian Academy of Sciences, P.P. Shirshov Institute of OceanologyKaliningradRussia

Personalised recommendations