The Role of the Distribution of Mass Within Water Bodies on Earth

  • Kolumban HutterEmail author
  • Yongqi Wang
  • Irina P. Chubarenko
Part of the Advances in Geophysical and Environmental Mechanics and Mathematics book series (AGEM)


Chapter 4 was devoted to the derivation and presentation of the governing equations of fluid mechanics and thermodynamics as they apply to fluid bodies under motion. The intention was to build a basic understanding of the mathematical description of the physical laws of balances of mass, momenta and energy in a form sufficiently general to all situations which one could possibly encounter in applications of physical limnology needed for this book.


Internal Wave Gravity Current Vertical Velocity Component Buoyancy Frequency Baroclinic Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bäuerle, E. and Hollan, E.: Seenphysicalische und limnologische Dokumentation zur Vorstreckung des Alpenrheins in den Bodensee. Eine Literaturstudie. Ber. IGKB 42, 122p. (1993)Google Scholar
  2. 2.
    Bäuerle, E., Ollinger, D. and Ilmberger, J.: Some meteorological, hydrological, and hydrodynamical aspects of Upper Lake Constance. In: Adv. Limnol. 53. Lake Constance. Characterisation of an ecosystem in transition. E.Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart (1998)Google Scholar
  3. 3.
    Chubarenko, I.P. and Demchenko, N.Yu.: Laboratory modeling of a thermal bar structure and related circulation in a basin with a sloping bottom. Oceanology 48(3), 356–370 (2008)CrossRefGoogle Scholar
  4. 4.
    Cooper, L.H.N. and Vaux, D.: Cascading over the continental slope of water from the Celtic Sea. J. Mar. Biol. Assoc. UK 28, 719–750 (1949)CrossRefGoogle Scholar
  5. 5.
    Coulter, G.W.: Low apparent oxygen requirements of deep-water fishes in Lake Tanganyika. Nature 215, 317–318 (1967)CrossRefGoogle Scholar
  6. 6.
    Courant, R. and Hilbert D.: Methods of Mathematical Physics. Interscience, New York NY. Vol.1, 561p. (1953), Vol.2, 830p. (1962)Google Scholar
  7. 7.
    Cox, S.M. and Leibovich, S.: Langmuir circulations in a surface layer bounded by a strong thermocline. J. Phys.Oceanogr. 23, 1330–1345 (1993)CrossRefGoogle Scholar
  8. 8.
    Craik, A.D.D. and Leibovich, S.: A rational model for Langmuir circulations. J. Fluid Mech. 73, 401–426 (1976)CrossRefGoogle Scholar
  9. 9.
    Fedorov, K.N.: Fine Thermohaline Structure of Ocean Water Masses. Hydrometeoizdat, Leningrad, 184 p. (1976) (in Russian)Google Scholar
  10. 10.
    Fedorov, K.N.: Physical Nature and Structure of the Oceanic Fronts. Leningrad, Hydrometeoizdat, 296 p. (1983) (in Russian)Google Scholar
  11. 11.
    Fer, I., Lemmin, U. and Thorpe, S.A.: Observations of mixing near the sides of a deep lake in winter. Limnol. Oceanogr. 47(2), 535–544 (2002)CrossRefGoogle Scholar
  12. 12.
    Foster, T.D. and Carmack, E.C.: Frontal zone mixing and Antarctic Bottom Water formation in the Southern Weddel Sea. Deep-Sea Res. 23, 301–317 (1976)Google Scholar
  13. 13.
    Grachev, M.: Slow renewal of deep waters. Nature 349, 654–655 (1991)CrossRefGoogle Scholar
  14. 14.
    Hohmann, R., Hofer, M., Kipfer, R., Peeters, F., Imboden, D.M. and Shimaraev, M.N.: Distribution of helium and tritium in Lake Baikal. J. Geophys. Res. 103(12), 823-838 (1998)Google Scholar
  15. 15.
    Horn, W.: Zürichsee 1978: Physikalisch-limnologisches Messprogramm und Datensammlung. Interner Bericht Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie an der ETH, Zürich (1981)Google Scholar
  16. 16.
    Hutchinson, G.E.: A treatise on limnology. Geography, Phys. And Chemistry, New York NY, 1016 p. (1957)Google Scholar
  17. 17.
    Hutter. K.: Linear gravity waves, Kelvin waves, Poincaré waves, Theoretical modelling and observations. In: Hydrodynamics of Lakes. (ed. Hutter, K.) Springer, New York, NY, 39–80 (1984)Google Scholar
  18. 18.
    Hutter, K.: Waves and oscillations in the ocean and in lakes. In: Continuum Mechanics in Environmental Sciences and Geophysics. (ed. Hutter, K.) Springer, New York, NY 79–240 (1993)Google Scholar
  19. 19.
    Hutter, K. and Jöhnk, K.: Continuum Methods of Physical Modeling. Springer Berlin, 635 p. (2004)Google Scholar
  20. 20.
    Ivanov, V.V., Shapiro, G.I., Huthnance, J.M., Aleynik, D.L. and Golovin, P.N.: Cascades of dense water around the world ocean. Prog. Oceanog., 60(1), 47–98 (2004)CrossRefGoogle Scholar
  21. 21.
    Jacobs, S.S., Amos, A.F. and Bruchhauser, P.M.: Ross Sea oceanography and Antarctic Bottom Water formation. Deep-Sea Res. 17, 935–962 (1970)Google Scholar
  22. 22.
    Killworth, P.D.: On ‘chimney’ formation in the ocean. J.Phys.Oceanogr. 9, 531–554 (1979)CrossRefGoogle Scholar
  23. 23.
    Kodonev, G.G.: Deep-water renewal in Lake Baikal. Geol. Geofiz. 42, 1127–1136 (2001)Google Scholar
  24. 24.
    Langmuir, I.: Surface motion of water induced by wind. Science 87, 119–123 (1938)CrossRefGoogle Scholar
  25. 25.
    Lazier, J.R.N.: The renewal of Labrador Sea water. Deep-Sea Res. 20 341–353 (1973)Google Scholar
  26. 26.
    Leaman, K.D. and Schott, F.A.: Hydrographic structure of the covection regime in the Gulf of Lions: winter 1987. J. Phys. Oceanogr. 21, 575–598 (1991)CrossRefGoogle Scholar
  27. 27.
    LeBlond, P.H. and Mysak, L.A.: Waves in the Ocean. Elsevier, Amsterdam, 602 p. (1978)Google Scholar
  28. 28.
    Lighthill, J.: Waves in Fluids. Cambridge University Press, Cambridge, 504 p. (1978)Google Scholar
  29. 29.
    McDougall, T.J.: Thermobaricity, cabbeling and water mass conversion. J. Geophys. Res. 92 (C5), 5448–5464 (1987)CrossRefGoogle Scholar
  30. 30.
    MEDOC Group: Observation of formation of deep water in the Mediterranean Sea. Nature 227, 1037–1040 (1970)CrossRefGoogle Scholar
  31. 31.
    Meirowich, L.: Analytical Methods of Vibration. MacMillan, London, 555 p. (1969)Google Scholar
  32. 32.
    Rossby, H.T.: On thermal convection driven by non-uniform heating from below: an experimental study. Deep-Sea Res. 12, 9–16 (1965)Google Scholar
  33. 33.
    Send, U. and Marshall, J.: Integral effect of deep convection. J. Phys. Oceanogr. 25, 855–872 (1975)CrossRefGoogle Scholar
  34. 34.
    Shimaraev, M.N., Verbolov, V.I., Granin, N.G. and Sherstyankin, P.P.: Physical Limnology of Lake Baikal: a Review. Baikal International Center for Ecological Research, Irkutsk-Okayama, 81 p. (1994)Google Scholar
  35. 35.
    Sturman, J.J., Oldham, C.E. and Ivey, G.N.: Steady convective exchange flow down slopes. Aquat. Sci. 61, 260–278 (1999)CrossRefGoogle Scholar
  36. 36.
    Tikhomirov, A.I.: Thermics of Large Lakes. Leningrad, Nauka, 232 p. (1982) (in Russian)Google Scholar
  37. 37.
    Turner, J.S.: Buoyancy Effects in Fluids. Cambridge University Press, Cambridge, MA 432 p (1973)CrossRefGoogle Scholar
  38. 38.
    Weiss, R.F., Carmack, E.C. and Koropalov, V.M.: Deepwater renewal and biological production in Lake Baikal. Nature 349, 665–669 (1991)CrossRefGoogle Scholar
  39. 39.
    Wüest, A., Ravens, T., Granin, N., Kocsis, O., Schurter, M. and Sturm, M.: Cold intrusions in Lake Baikal: Direct observational evidence for deep-water renewal. Limnol. Oceanogr. 50(1), 184–196 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kolumban Hutter
    • 1
    Email author
  • Yongqi Wang
    • 2
  • Irina P. Chubarenko
    • 3
  1. 1.ETH Zürich, c/o Versuchsanstalt für Wasserbau Hydrologie und GlaziologieZürichSwitzerland
  2. 2.Department of Mechanical EngineeringDarmstadt University of TechnologyDarmstadtGermany
  3. 3.Russian Academy of Sciences, P.P. Shirshov Institute of OceanologyKaliningradRussia

Personalised recommendations