A Note on Assumption-Completeness in Modal Logic

  • Jonathan A. Zvesper
  • Eric Pacuit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6006)


We study the notion of assumption-completeness, which is a property of belief models first introduced in [18]. In that paper it is considered a limitative result – of significance for game theory – if a given language does not have an assumption-complete belief model. We show that there are assumption-complete models for the basic modal language (Theorem 8).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apt, K.R., Zvesper, J.A.: Common Beliefs and Public Announcements in Strategic Games with Arbitrary Strategy Sets. Manuscript (2007); CoRR abs/0710.3536 Google Scholar
  2. 2.
    Areces, C., Blackburn, P., Marx, M.: Hybrid Logic is the Bounded Fragment of First Order Logic. In: de Queiroz, R., Carnielli, W. (eds.) WoLLIC 1999, pp. 33–50. Rio de Janeiro, Brazil (1999)Google Scholar
  3. 3.
    Aumann, R.J.: Agreeing to Disagree. Ann. Stat. 4(6), 1236–1239 (1976)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Baltag, A.: A Structural Theory of Sets. Ph.D. thesis, Indiana University (1998)Google Scholar
  5. 5.
    Baltag, A., Smets, S., Zvesper, J.A.: When All is Done but Not (Yet) Said: Dynamic Rationality in Extensive Games. In: van Benthem, J., Pacuit, E. (eds.) Proceedings of Workshop on Logic and Intelligent Interaction, ESSLLI (2008)Google Scholar
  6. 6.
    Battigalli, P., Bonanno, G.: Recent Results on Belief, Knowledge and the Epistemic Foundations of Game Theory. Res. Econ. 53, 149–225 (1999)CrossRefGoogle Scholar
  7. 7.
    Battigalli, P., Siniscalchi, M.: Strong Belief and Forward Induction Reasoning. J. Econ. Theory 106(2), 356–391 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    van Benthem, J.: Minimal Deontic Logics. Bull. Section Log. 8(1), 36–42 (1979)MATHGoogle Scholar
  9. 9.
    van Benthem, J.: Games in Dynamic Epistemic Logic. Bull. Econ. Res. 53(4), 219–248 (2001)CrossRefMathSciNetGoogle Scholar
  10. 10.
    van Benthem, J.: Rational Dynamics and Epistemic Logic in Games. Int. Game Theory Rev. 9(1), 13–45 (2007) (Erratum reprint 9(2), 377–409)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    van Benthem, J., van Otterloo, S., Roy, O.: Preference Logic, Conditionals, and Solution Concepts in Games. ILLC Publications PP-2005-28. Universiteit van Amsterdam (2005)Google Scholar
  12. 12.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar
  13. 13.
    Board, O.: Dynamic Interactive Epistemology. Games Econ. Behav. 49, 49–80 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Bonanno, G.: Modal Logic and Game Theory: Two Alternative Approaches. Risk, Decision and Policy 7(3), 309–324 (2002)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Brandenburger, A.: On the Existence of a “Complete” Possibility Structure. In: Dimitri, N., Basili, M., Giboa, I. (eds.) Cognitive Processes and Economic Behavior, pp. 30–34. Routledge, London (2003)Google Scholar
  16. 16.
    Brandenburger, A.: The Power of Paradox: Some Recent Developments in Interactive Epistemology. Int. J. Game Theory 35(4), 465–492 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Brandenburger, A., Friedenberg, A., Keisler, H.J.: Admissibility in Games. Econometrica 76(2), 307–352 (2008)MATHMathSciNetGoogle Scholar
  18. 18.
    Brandenburger, A., Keisler, H.J.: An Impossibility Theorem on Beliefs in Games. Stud. Log. 84(2), 211–240 (2006)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    de Bruin, B.: Explaining Games: On the Logic of Game Theoretic Explanations. Ph.D. thesis, Universiteit van Amsterdam (2004); ILLC Publications DS-2004-03Google Scholar
  20. 20.
    ten Cate, B.: Model Theory for Extended Modal Languages. Ph.D. thesis, Universiteit van Amsterdam (2005); ILLC Publications DS-2005-01Google Scholar
  21. 21.
    Devlin, K.: The Joy of Sets: Fundamentals of Contemporary Set Theory. Undergraduate Texts in Mathematics. Springer, Heidelberg (1993)MATHGoogle Scholar
  22. 22.
    Feferman, S.: Persistent and Invariant Formulas for Outer Extensions. Compositio Math. 20, 29–52 (1968)MATHMathSciNetGoogle Scholar
  23. 23.
    Halpern, J.Y., Lakemeyer, G.: Multi-agent Only Knowing. J. Log. Comp. 11(1), 41–70 (2001)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Halpern, J.Y., Moses, Y.: Characterizing Solution Concepts in Games Using Knowledge-based Programs. In: Veloso, M.M. (ed.) IJCAI 2007, pp. 1300–1307. Morgan Kaufmann, San Francisco (2007)Google Scholar
  25. 25.
    Harsanyi, J.C.: Games with Incompletete Information Played by ‘Bayesian’ Players. Part I: The Basic Model. Management Sci. 14(3), 159–182 (1967)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Harsanyi, J.C.: Games with Incompletete Information Played by ‘Bayesian’ Players. Part II: Bayesian Equilibrium Points. Management Sci. 14(5), 320–334 (1968)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Harsanyi, J.C.: Games with Incompletete Information Played by ‘Bayesian’ Players. Part III: The Basic Probability Distribution of the Game. Management Sci. 14(7), 486–502 (1968)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Hintikka, J.: Knowledge and Belief: an Introduction to the Logic of the Two Notions. Cornell University Press (1962)Google Scholar
  29. 29.
    Humberstone, I.L.: The modal Logic of All and Only. Notre Dame J. Form. Log. 28, 177–188 (1987)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Levesque, H.J.: All I Know: a Study in Autoepistemic Logic. Artif. Intell. 42(2-3), 263–309 (1990)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Mariotti, T., Meier, M., Piccione, M.: Hierarchies of Beliefs for Compact Possibility Models. J. Math. Econ. 41, 303–324 (2005)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Pacuit, E.: Understanding the Brandenburger-Keisler Paradox. Stud. Log. 86(3), 435–454 (2007)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Zvesper, J.A.: The Brandenburger-Keisler Paradox in Normal Modal Logics (2007) (manuscript)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jonathan A. Zvesper
    • 1
  • Eric Pacuit
    • 2
  1. 1.Computing LaboratoryUniversity of OxfordOxfordUnited Kingdom
  2. 2.Center for Logic and Philosophy of ScienceUniversiteit van TilburgTilburgThe Netherlands

Personalised recommendations