Skip to main content

On Factor Universality in Symbolic Spaces

  • Conference paper
Mathematical Foundations of Computer Science 2010 (MFCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6281))

Abstract

The study of factoring relations between subshifts or cellular automata is central in symbolic dynamics. Besides, a notion of intrinsic universality for cellular automata based on an operation of rescaling is receiving more and more attention in the literature. In this paper, we propose to study the factoring relation up to rescalings, and ask for the existence of universal objects for that simulation relation.

In classical simulations of a system S by a system T, the simulation takes place on a specific subset of configurations of T depending on S (this is the case for intrinsic universality). Our setting, however, asks for every configurations of T to have a meaningful interpretation in S. Despite this strong requirement, we show that there exists a cellular automaton able to simulate any other in a large class containing arbitrarily complex ones. We also consider the case of subshifts and, using arguments from recursion theory, we give negative results about the existence of universal objects in some classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, R.: The undecidability of the domino problem. Mem. Amer. Math Soc. 66 (1966)

    Google Scholar 

  2. Boyer, L., Theyssier, G.: On local symmetries and universality in cellular automata. In: STACS, pp. 195–206 (2009)

    Google Scholar 

  3. Cervelle, J., Formenti, E., Guillon, P.: Ultimate traces of cellular automata. In: STACS, pp. 155–166 (2010)

    Google Scholar 

  4. Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking ii: Classifications of cellular automata. CoRR, abs/1001.5471 (2010)

    Google Scholar 

  5. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic universality in self-assembly. In: STACS, pp. 275–286 (2010)

    Google Scholar 

  6. Durand-Lose, J.O.: Intrinsic universality of a 1-dimensional reversible cellular automaton. In: STACS, pp. 439–450 (1997)

    Google Scholar 

  7. Hedlund, G.A.: Endomorphisms and Automorphisms of the Shift Dynamical Systems. Mathematical Systems Theory 3(4), 320–375 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hochman, M.: A note on universality in multidimensional symbolic dynamics. Discrete Contin. Dyn. Syst. Ser. S 2(2), 301–314 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Inventiones Mathematicae 176(1), 131–167 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Kari, J.: The Nilpotency Problem of One-dimensional Cellular Automata. SIAM Journal on Computing 21, 571–586 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dynamical Systems 17, 417–433 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kůrka, P.: Topological and symbolic dynamics. Société Mathématique de France (2003)

    Google Scholar 

  13. Kůrka, P.: Zero-dimensional dynamical systems, formal languages, and universality. Theory Comput. Syst. 32(4), 423–433 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lafitte, G., Weiss, M.: An almost totally universal tile set. In: TAMC, pp. 271–280 (2009)

    Google Scholar 

  15. Moreira, A.: Universality and decidability of number-conserving cellular automata. Theor. Comput. Sci. 292(3), 711–721 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nasu, M.: The dynamics of expansive invertible onesided cellular automata. Trans. Amer. Math. Soc. 354, 4067–4084 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Urbana (1966)

    Google Scholar 

  18. Ollinger, N.: Automates Cellulaires: structures. PhD thesis, École Normale Supérieure de Lyon (décembre 2002)

    Google Scholar 

  19. Ollinger, N.: The quest for small universal cellular automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 318–330. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  20. Ollinger, N.: The intrinsic universality problem of one-dimensional cellular automata. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 632–641. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Sablik, M.: Directional dynamics for cellular automata: A sensitivity to initial condition approach. Theor. Comput. Sci. 400(1-3), 1–18 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Theyssier, G.: Automates Cellulaires: un modèle de complexités. PhD thesis, École Normale Supérieure de Lyon (Décembre 2005)

    Google Scholar 

  23. Wang, H.: Proving theorems by pattern recognition ii. Bell System Tech. Journal 40(2) (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boyer, L., Theyssier, G. (2010). On Factor Universality in Symbolic Spaces. In: Hliněný, P., Kučera, A. (eds) Mathematical Foundations of Computer Science 2010. MFCS 2010. Lecture Notes in Computer Science, vol 6281. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15155-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15155-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15154-5

  • Online ISBN: 978-3-642-15155-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics