Skip to main content

The Percolation Transition

  • Chapter
  • First Online:
Scale Invariance
  • 1439 Accesses

Abstract

What physical concept can unite the flow of liquid through ground coffee, electrical conduction in a conductor–insulator mixture, target collapse on shooting, the birth of a continent, polymer gelification and the spread of epidemics or forest fires? One question is common to all these processes: how is “something” produced at large scales by contributions at small scales? In all these situations, a quantity (liquid, electric charges, target fracture, dry land, molecular crosslinks, disease or fire) may or may not propagate from one element to its neighbour. As in the previous chapters, we are interested in asymptotic properties resulting at large scale, that is to say in a system that is large compared with the size of the individual elements. The analogue of temperature T here is the inverse of the relative population density p of elements (pores, conducting regions, impacts, etc) which varies between 0 and 1 for the maximum population density. p ∼ 0 corresponds to a large amount of disorder for a dilute population and p ∼ 1 corresponds to a large amount of order established. In these situations we can ask ourselves the same questions as for changes of states of matter in thermal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    By the average connectivity length of a given cluster, we mean the average distance separating the cluster elements.

  2. 2.

    That is to say it has classical geometric properties (non fractal), for instance the number of elements contained in a region of linear extension L of the infinite cluster varies as L d where d is the dimension of space (see also Sect. 3.1.1).

References

  1. S. Alexander, R. Orbach, Density of states on fractals-fractons. J. Physique Lett., 43, L625 (1982)

    Article  Google Scholar 

  2. L. De Arcangelis, S. Redner, A. Coniglio, Anomalous voltage distribution of random resistor networks and a new model for the backbone at the percolation threshold. Phys. Rev. B 31, 4725 (1985)

    Article  ADS  Google Scholar 

  3. H.G. Ballesteros et al., Scaling corrections: site percolation and Ising model in three dimensions. J. Phys. A 32, 1 (1999)

    Article  ADS  MATH  Google Scholar 

  4. J.P. Bouchaud, A. Georges, Anomalous diffusion in disordered media – Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  5. S.R. Broadbent, J.M. Hammersley, Percolation processes. Proc. Cambridge Philos. Soc. 53, 629 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Deutscher, R. Zallen, J. Adler, Percolation Structures and Processes, about twenty papers in Annals of the Isral Physical Society, vol. 5 (Hilger, Bristol, 1983)

    Google Scholar 

  7. P.D. Eschbach, D. Stauffer, H.J. Hermann, Correlation-length exponent in two-dimensional percolation and Potts model. Phys. Rev. B 23, 422 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Flory, Molecular size distribution in three-dimensional polymers: I, gelation.s J. Am. Chem. Soc. 63, 3083 (1941)

    Article  Google Scholar 

  9. P.G. De Gennes, La percolation, un concept unificateur. La Recherche 7, 919 (1976)

    Google Scholar 

  10. D.J. Jacobs, M.F. Thorpe, Generic rigidity percolation: the peeble game. Phys. Rev. Lett. 75, 4051 (1995)

    Article  ADS  Google Scholar 

  11. P.W. Kasteleyn, C.M. Fortuin, Phase transitions in lattice systems with random local properties. J. Phys. Soc. JPN Suppl. 16, 11 (1969)

    ADS  Google Scholar 

  12. H. Kesten Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982)

    MATH  Google Scholar 

  13. B. Kozlov, M. Laguës, Universality of 3D percolation exponents and first-order corrections to scaling for conductivity exponents, Physica A, 389, 5339 (2010)

    Article  ADS  Google Scholar 

  14. M. Laguës, Electrical conductivity of microemulsions: a case of stirred percolation. J. Physique Lett. 40, L331 (1979)

    Article  ADS  Google Scholar 

  15. J. Schmittbuhl, G. Olivier, S. Roux, Multifractality of the current distribution in directed percolation. J. Phys. A-Math. Gen. 25, 2119 (1992)

    Article  ADS  Google Scholar 

  16. D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor & Francis, London, 1992)

    Google Scholar 

  17. O. Stenull, H.K. Janssen, Noisy random resistor networks: Renormalized field theory for the multifractal moments of the current distribution. Phys. Rev. E 63, 036103 (2001)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annick Lesne .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lesne, A., Laguës, M. (2012). The Percolation Transition. In: Scale Invariance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15123-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15123-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15122-4

  • Online ISBN: 978-3-642-15123-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics