Advertisement

Comparative Analysis of Hybrid Techniques for an Ant Colony System Algorithm Applied to Solve a Real-World Transportation Problem

  • Juan Javier González-Barbosa
  • José Francisco Delgado-Orta
  • Laura Cruz-Reyes
  • Héctor Joaquín Fraire-Huacuja
  • Apolinar Ramirez-Saldivar
Part of the Studies in Computational Intelligence book series (SCI, volume 312)

Abstract

This work presents a comparison of hybrid techniques used to improve the Ant Colony System algorithm (ACS), which is applied to solve the well-known Vehicle Routing Problem (VRP). The Ant Colony System algorithm uses several techniques to get feasible solutions as learning, clustering and search strategies. They were tested with the dataset of Solomon to prove the performance of the Ant Colony System, solving the Vehicle Routing Problem with Time Windows and reaching an efficiency of 97% in traveled distance and 92% in used vehicles. It is presented a new focus to improve the performance of the basic ACS: learning for levels, which permits the improvement of the application of ACS solving a Routing-Scheduling-Loading Problem (RoSLoP) in a company case study. ACS was applied to optimize the delivery process of bottled products, which production and sale is the main activity of the company. RoSLoP was formulated through the well-known Vehicle Routing Problem (VRP) as a rich VRP variant, which uses a reduction method for the solution space to obtain the optimal solution. It permits the use in efficient way of computational resources, which, applied in heuristic algorithms reach an efficiency of 100% in the measurement of traveled distance and 83% in vehicles used solving real-world instances with learning for levels. This demonstrates the advantages of heuristic methods and intelligent techniques for solving optimization problems.

Keywords

Minimum Span Tree Travel Salesman Problem Travel Salesman Problem Vehicle Route Problem Heuristic Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Archetti, C.: The Vehicle Routing Problem with capacity 2 and 3, General Distances and Multiple Customer Visits. Operational Research in Land and Resources Manangement, 102 (2001)Google Scholar
  2. 2.
    Bianchi, L.: Notes on Dynamic Vehicle Routing. Technical Report IDSIA - Istituto Dalle Molle di Studi sull’Intelligenza Artificiale, Switzerland (2000)Google Scholar
  3. 3.
    Bock, F.: An algorithm for solving traveling salesman and related network optimization problems. In: Fourteenth National Meeting of the Operational Research Society of America, St. Louis, MO, USA (1958)Google Scholar
  4. 4.
    Bullnheimer, B., Hartl, R.F., Strauss, C.: A New Rank Based Version of the Ant System: A Computational Study. Technical report, Institute of Management Science, University of Vienna, Austria (1997)Google Scholar
  5. 5.
    Cano, I., Litvinchev, I., Palacios, R., Naranjo, G.: Modeling Vehicle Routing in a Star-Case Transporation Network. In: XVI International Congress of Computation, CIC-IPN (2005)Google Scholar
  6. 6.
    Colorni, A., Dorigo, M., Maniezzo, V.: An Investigation of Some Properties of an Ant Algorithm. In: Manner, R., Manderick, B. (eds.) Proceedings of PPSN-II, Second International Conference on Parallel Problem Solving from Nature, pp. 509–520. Elsevier, Amsterdam (1992)Google Scholar
  7. 7.
    Colorni, A., Dorigo, M., Matienzo, V.: Distributed Optimization by An Colonies. In: Varela, F.J., Bourgine, P. (eds.) Proc. First European Conference on Artificial Life, pp. 134–142. MIT Press, Cambridge (1992)Google Scholar
  8. 8.
    Cordeau, F., et al.: The VRP with time windows. Technical Report Cahiers du GERAD G-99-13, Ecole des Hautes ´Etudes Commerciales de Montreal (1999)Google Scholar
  9. 9.
    Croes, G.: A method for solving traveling salesman problems. Proc. Operations Research 5, 791–812 (1958)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Cruz, L., et al.: An Ant Colony System to solve Routing Problems applied to the delivery of bottled products. In: An, A. (ed.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 68–77. Springer, Heidelberg (2008)Google Scholar
  11. 11.
    Cruz, L., et al.: DiPro: An Algorithm for the Packing in Product Transportation Problems with Multiple Loading and Routing Variants. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 1078–1088. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Dantzig, G.B., Ramser, J.H.: The Truck Dispatching Problem. Management Science 6(1), 80–91 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Delgado, J., et al.: Construction of an optimal solution for a Real-World Routing-Scheduling-Loading Problem. Journal Research in Computing Science 35, 136–145 (2008)Google Scholar
  14. 14.
    Dorigo, M., Gambardella, L.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem, Technical Report TR/IRIDIA/1996-5, IRIDIA, Université Libre de Bruxelles (1996)Google Scholar
  15. 15.
    Dorigo, M.: Positive Feedback as a Search Strategy. Technical Report. No. 91-016. Politecnico Di Milano, Italy (1991)Google Scholar
  16. 16.
    Dorronsoro, B.: The VRP Web. AUREN. Language and Computation Sciences of the University of Malaga (2005), http://neo.lcc.uma.es/radi-aeb/WebVRP
  17. 17.
    Fleischmann, B.: The Vehicle routing problem with multiple use of vehicles. Working paper, Fachbereigh Wirtschafts wissens chaften, Universitt Hamburg (1990)Google Scholar
  18. 18.
    Gambardella, L., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem. In: Prieditis, A., Russell, S. (eds.) Proceedings of ML-95, Twelfth International Conference on Machine Learning, Tahoe City, CA, pp. 252–260. Morgan Kaufmann, San Francisco (1995)Google Scholar
  19. 19.
    Goel, A., Gruhn, V.: Solving a Dynamic Real-Life Vehicle Routing Problem. In: Haasis, H.-D., et al. (eds.) Operations Research Proceedings 2005, Bremen, Deutschland (2005)Google Scholar
  20. 20.
    Hasle, G., Kloster, O., Nilssen, E.J., Riise, A., Flatberg, T.: Dynamic and Stochastic Vehicle Routing in Practice. Operations Research/Computer Science Interfaces Series, vol. 38, pp. 45–68. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Herrera, J.: Development of a methodology based on heuristics for the integral solution of routing, scheduling and loading problems on distribution and delivery processes of products. Master’s Thesis. Posgrado en Ciencias de la Computación. Instituto Tecnológico de Ciudad Madero, México (2006)Google Scholar
  22. 22.
    Jacobs, B., Goetshalckx, M.: The Vehicle Routing Problem with Backhauls: Properties and Solution Algorithms. Techincal report MHRC-TR-88-13, Georgia Institute of Technology (1993)Google Scholar
  23. 23.
    Mariano, C.E., Morales, E.F.: DQL: A New Updating Strategy for Reinforcement Learning Based on Q-Learning. In: Mariano, C., Morales, E. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 324–335. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Mingozzi, A.: An exact Algorithm for Period and Multi-Depot Vehicle Routing Problems. Department of Mathematics, University of Bologna, Bologna, Italy (2003)Google Scholar
  25. 25.
    Pisinger, D., Ropke, S.: A General Heuristic for Vehicle Routing Problems. Tech. report, Dept. of Computer Science, Univ. Copenhagen (2005)Google Scholar
  26. 26.
    Potvin, J., Rousseau, J.: An Exchange Heuristic for Routeing Problems with Time Windows. Proc. Journal of the Operational Research Society 46, 1433–1446 (1995)zbMATHGoogle Scholar
  27. 27.
    Prosser, P., Shaw, P.: Study of Greedy Search with Multiple Improvement Heuristics for Vehicle Routing Problems. Tech. report, University of Strathclyde, Glasgow, Scotland (1996)Google Scholar
  28. 28.
    Rangel, N.: Analysis of the routing, scheduling and loading problems in a Products Distributor. Master Thesis. Posgrado en Ciencias de la Computación. Instituto Tecnológico de Ciudad Madero, México (2005)Google Scholar
  29. 29.
    Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems. In: Maher, M. (ed.) CP 1998. LNCS, vol. 1520, pp. 417–431. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  30. 30.
    Stützle, T., Hoos, H.: Improving the Ant System: A detailed report on the MAX-MIN Ant System. Technical report AIDA-96-12, FG Intellektik, FB Informatik, TU Darmstadt (1996)Google Scholar
  31. 31.
    Taillard, E.: A Heuristic Column Generation Method For the Heterogeneous Fleet VRP. Istituto Dalle Moli di Studi sull Inteligenza Artificiale, Switzerland. CRI-96-03 (1996)Google Scholar
  32. 32.
    Taillard, E., Badeau, P., Gendreu, M., Guertin, F., Potvin, J.Y.: A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows. Transportation Science 31, 170–186 (1997)zbMATHCrossRefGoogle Scholar
  33. 33.
    Thangiah, S.: A Site Dependent Vehicle Routing Problem with Complex Road Constraints. Artificial Intelligence and Robotics Laboratory, Slippery Rock University, U.S.A. (2003)Google Scholar
  34. 34.
    Toth, P., Vigo, D.: The vehicle routing problem, Monographs on Discrete Mathematics and Applications. Society for Industrial and Applied Mathematics (2001)Google Scholar
  35. 35.
    Wolpert, D.H., et al.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Juan Javier González-Barbosa
    • 1
  • José Francisco Delgado-Orta
    • 1
  • Laura Cruz-Reyes
    • 1
  • Héctor Joaquín Fraire-Huacuja
    • 1
  • Apolinar Ramirez-Saldivar
    • 1
  1. 1.Instituto Tecnológico Ciudad MaderoCd. MaderoMéxico

Personalised recommendations