Local Survival Rule for Steer an Adaptive Ant-Colony Algorithm in Complex Systems
- 2 Citations
- 711 Downloads
Abstract
The most prevalent P2P application today is file sharing, both among scientific users and the general public. A fundamental process in file sharing systems is the search mechanism. The unstructured nature of real-world large-scale complex systems poses a challenge to the search methods, becasuse global routing and directory services are impractical to implement. In this paper, a new ant-colony algorithm, Adaptive Neighboring-Ant Search (AdaNAS), for the semantic query routing problem (SQRP) in a P2P network is presented. The proposed algorithm incorporates an adaptive control parameter tuning technique for runtime estimation of the time-to-live (TTL) of the ants. AdaNAS uses three strategies that take advantage of the local environment: learning, characterization, and exploration. Two classical learning rules are used to gain experience on past performance using three new learning functions based on the distance traveled and the resources found by the ants. The experimental results show that the AdaNAS algorithm outperforms the NAS algorithm where the TTL value is not tuned at runtime.
Keywords
parameter tuning search algorithm peer-to-peer adaptive algorithm local environment ant-colony algorithmsPreview
Unable to display preview. Download preview PDF.
References
- 1.Adamic, L., Huberman, B.: Power-law distribution of the World Wide Web. Science 287(5461), 2115 (2000)CrossRefGoogle Scholar
- 2.Albert, R., Jeong, H., Barabási, A.: Error and attack tolerance of complex networks. Nature 506, 378–382 (2000)CrossRefGoogle Scholar
- 3.Amaral, L., Ottino, J.: Complex systems and networks: Challenges and opportunities for chemical and biological engineers. Chemical Engineering Scientist 59, 1653–1666 (2004)CrossRefGoogle Scholar
- 4.Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Computing Surveys 36(4), 335–371 (2004)CrossRefGoogle Scholar
- 5.Babaoglu, O., Meling, H., Montresor, A.: Anthill: An framework for the development of agent-based peer to peer systems. In: 22nd International Conference On Distributed Computing Systems. ACM, New York (2002)Google Scholar
- 6.Barabási, A.: Emergence of scaling in complex networks, pp. 69–82. Wiley VHC, Chichester (2003)Google Scholar
- 7.Barabási, A., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Physical Review Letters 272, 173–189 (1999)Google Scholar
- 8.Birattari, M.: The Problem of Tunning Mataheuristics as Seen From a Machine Learning Perspective. PhD thesis, Bruxelles University (2004)Google Scholar
- 9.Bollobás, B.: Random Graphs, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 73. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
- 10.Costa, L., Rodríguez, F.A., Travieso, G., Villas, P.R.: Characterization of complex networks: A survey of measurements. Advances in Physics 56, 167–242 (2007)CrossRefGoogle Scholar
- 11.Cruz, L., Gómez, C., Aguirre, M., Schaeffer, S., Turrubiates, T., Ortega, R., Fraire, H.: NAS algorithm for semantic query routing systems in complex networks. In: DCAI. Advances in Soft Computing, vol. 50, pp. 284–292. Springer, Heidelberg (2008)Google Scholar
- 12.DiCaro, G., Dorigo, M.: AntNet: Distributed stigmergy control for communications networks. Journal of Artificial Intelligence Research 9, 317–365 (1998)Google Scholar
- 13.Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173. Springer, New York (2000)Google Scholar
- 14.Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)CrossRefGoogle Scholar
- 15.Erdos, P., Rényi, A.: On the evolution of random graphs, vol. 2, pp. 482–525. Akademiai Kiad´o, Budapest, Hungary, 1976. First publication in MTA Mat. Kut. Int. Kozl. (1960)Google Scholar
- 16.Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationship on the internet topology. ACM SIGCOMM Computer Communication Review 29, 251–262 (1999)CrossRefGoogle Scholar
- 17.Gilbert, E.: Random graphs. Annals of Mathematical Statistics 30(4), 1141–1144 (1959)zbMATHCrossRefMathSciNetGoogle Scholar
- 18.Glover, F., Kochenberger, G.: Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol. 57. Springer, Heidelberg (2003)zbMATHGoogle Scholar
- 19.Glover, F., Laguna, M.: Tabú Search. Kluwer Academic Publishers, Dordrecht (1986)Google Scholar
- 20.Goldberg, P., Papadimitriou, C.: Reducibility among equilibrium problems. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pp. 61–70. ACM, New York (2005)Google Scholar
- 21.Gummadi, K., Dunn, R., Saroiu, S., Gribble, S., Levy, H., Zahorjan, J.: Measurement, modeling and analisys of a peer-tp-peer file-sharing workload. In: 19th ACM Symposium on Operating Systems Principles. ACM, New York (2003)Google Scholar
- 22.Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)Google Scholar
- 23.Leibowitz, N., Ripeanu, M., Wierzbicki, A.: Deconstructing the kazaa network. In: 3rd IEEE Workshop on Internet Applications (2003)Google Scholar
- 24.Liu, L., XiaoLong, J., Kwock, C.C.: Autonomy oriented computing — from problem solving to complex system modeling, pp. 27–54. Springer Science + Business Media Inc., Heidelberg (2005)Google Scholar
- 25.Michlmayr, E.: Ant Algorithms for Self-Organization in Social Networks. PhD thesis, Vienna University of Technology (2007)Google Scholar
- 26.Michlmayr, E., Pany, A., Kappel, G.: Using Taxonomies for Content-based Routing with Ants. In: Proceedings of the Workshop on Innovations in Web Infrastructure, 15th International World Wide Web Conference (WWW2006) (May 2006)Google Scholar
- 27.Mihail, M., Saberi, A., Tetali, P.: Random walks with lookahead in power law random graphs. Internet Mathematics 3 (2004)Google Scholar
- 28.Newman, M.E.J.: Power laws, pareto distributions and zipf’s law. Contemporary Physics 46(5), 323–351 (2005)CrossRefGoogle Scholar
- 29.Ortega, R.: Estudio de las Propiedades Topológicas en Redes Complejas con Diferente Distribución del Grado y su Aplicación en la Búsqueda de Recursos Distribuidos. PhD thesis, Instituto Politécnico Nacional, México (2009)Google Scholar
- 30.Ridge, E.: Design of Expirements for the Tuning of Optimization Algorithms. PhD thesis, University of York (2007)Google Scholar
- 31.Ridge, E., Kudenko, D.: Tuning the Performance of the MMAS Heuristic in Engineering Stochastic Local Search Algorithms. In: Stützle, T., Birattari, M. (eds.) SLS 2007. LNCS, vol. 4638, pp. 46–60. Springer, Heidelberg (2007)CrossRefGoogle Scholar
- 32.Sakarayan, G.: A Content-Oriented Approach to Topology Evolution and Search in Peer-to-Peer Systems. PhD thesis, University of Rostock (2004)Google Scholar
- 33.Tempich, C., Staab, S., Wranik, A.: REMINDIN: Semantic Query Routing in Peer-to-Peer Networks based on Social Metaphers. In: 13th World Wide Web Conference, WWW (2004)Google Scholar
- 34.Wu, C.-J., Yang, K.-H., Ho: AntSearch: An ant search algorithm in unstructured peer-to-peer networks. In: ISCC, pp. 429–434 (2006)Google Scholar
- 35.Wu, L.-S., Akavipat, R., Menczer, F.: Adaptive query routing in peer Web search. In: Proc. 14th International World Wide Web Conference, pp. 1074–1075 (2005)Google Scholar