Molecular Communication Technology as a Biological ICT

Part of the Studies in Computational Intelligence book series (SCI, volume 320)


This chapter provides a comprehensive overview of state-of-the art research on molecular communication—a molecule-based communication paradigm for biological machines. Unlike current telecommunications based on electric or optical signals, molecular communication exploits biological molecules as information carriers. In molecular communication, senders of communication encode information onto molecules and transmit to the environment. The information coded molecules then propagate in the environment to reach receivers of communication, which capture and biochemically react to the molecules (i.e., decode the information from the information coded molecules). Since biological molecules are compatible with biological systems, molecular communication is expected to impact medical domains such as human health monitoring where implant biological machines interact with biological cells through molecular communication. This chapter describes key concepts, architecture, potential applications of molecular communication as well as existing research on engineering molecular communication components and systems.


Molecular communication Nano-networks Nanomachines 


  1. 1.
    A. Adamatzky, B.D.L. Costello, T. Asai, Reaction-diffusion computers, Elsevier (2005)Google Scholar
  2. 2.
    B. Atakan, O.B. Akan, “An information theoretical approach for molecular communication,” in Proceedings of 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems, Dec. 2007Google Scholar
  3. 3.
    K. Akiyoshi, A. Itaya, S.M. Nomura, N. Ono, K. Yoshikawa (2003) Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids. Fed. Eur. Biochem. Soc. Lett. 534(1–3), 33–38CrossRefGoogle Scholar
  4. 4.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology of the cell. (Garland Science, New York, 2002)Google Scholar
  5. 5.
    T.M. Allen, P.R. Cullis, Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004)CrossRefGoogle Scholar
  6. 6.
    S. Basu, Y. Gerchman, C. Collins, F. Arnold, R. Weiss, A synthetic multicellular system for programmed pattern formation, Nature. April 21 2005, vol 434, pp. 1130–1134Google Scholar
  7. 7.
    J.T. Barron, L. Gu, J.E. Parrillo, Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle. J. Mol. Cell Cardiol. 30, 1571–1579 (1998)CrossRefGoogle Scholar
  8. 8.
    K.J.L Burg, T. Boland, Minimally invasive tissue engineering composites and cell printing. IEEE Eng. Med. Biol. Mag. (2003)Google Scholar
  9. 9.
    J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemisty. 5th edn. (Freeman, New York, 2002)Google Scholar
  10. 10.
    D. Bray, Protein molecules as computational elements in living cells. Nature vol. 376, 27 July 1995Google Scholar
  11. 11.
    A. Chakravarty, L. Howard, D.A. Compton, A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol. Biol. Cell 15, 2116–2132 (2004)CrossRefGoogle Scholar
  12. 12.
    T. Dennis, J. Lee, T. Ozdere, T.J. Lee, L. You, Engineering gene circuits: foundations and applications, in Nanotechnology in Biology and Medicine Methods, Devices and Applications, Chapter 21, ed. by T. Vo-Dinh (CRC Press, USA, 2007)Google Scholar
  13. 13.
    J.E. Dueber, E.A. Mirsky, W.A. Lim, Engineering synthetic signaling proteins with ultrasensitive input/output control, Nat. Biotechnol. 25, 660–662 (2007).Google Scholar
  14. 14.
    T.R. de Kievit, B.H. Iglewski, Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68(9), 4839–4849 (2000)CrossRefGoogle Scholar
  15. 15.
    A. Eckford, Nanoscale communication with Brownian motion, in Proceedings of 41st Annual Conference on Information Sciences and Systems (2007)Google Scholar
  16. 16.
    A. Eckford, Achievable information rates for molecular communication with distinct molecules, in Proceedings of Workshop on Computing and Communications from Biological Systems: Theory and Applications (2007)Google Scholar
  17. 17.
    M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature Jan 20, 403(6767), 335–338 (2000)Google Scholar
  18. 18.
    A. Enomoto, M. Moore, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, A molecular communication system using a network of cytoskeletal filaments. in Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show 1, 725–728 (2006)Google Scholar
  19. 19.
    A.C. Forster, G.M. Church, Towards synthesis of a minimal cell. Mol. Syst. Biol. (2006)Google Scholar
  20. 20.
    R.A. Freitas Jr., Nanomedicine, vol. I. Basic Capabilities (Landes Bioscience, USA, 1999)Google Scholar
  21. 21.
    T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature Jan 20, 403(6767), 339–342 (2000)Google Scholar
  22. 22.
    Y. Gerchman, R. Weiss, Teaching bacteria a new Proceedings of the National Academy of Sciences 101(8), 2221–2222 (2004)Google Scholar
  23. 23.
    L.G. Griffith, G. Naughton, Tissue engineering—current challenges and expanding opportunities. Science. 295, 1009–1014 (2002)CrossRefGoogle Scholar
  24. 24.
    H. Hess, C.M. Matzke, R.K. Doot, J. Clemmens, G.D. Bachand, B.C. Bunker, V. Vogel, Molecular shuttles operating undercover: a new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Lett 3(12), 1651–1655 (2003)CrossRefGoogle Scholar
  25. 25.
    Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, T.Q.P. Uyeda, Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys. J. 81, 1555–1561 (2001)CrossRefGoogle Scholar
  26. 26.
    S. Hiyama, Y. Isogawa, T. Suda, Y. Moritani, K. Suto, A design of an autonomous molecule loading/transporting/unloading system using DNA hybridization and biomolecular linear motors in molecular communication (European Nano Systems, Grenoble, France, 2005)Google Scholar
  27. 27.
    S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular Communication, in Proceedings of the 2005 NSTI Nanotechnology Conference, poster presentation, USA, May 2005Google Scholar
  28. 28.
    J. Howard, Mechanics of motor proteins and the cytoskeleton (Sinauer, Sunderland, 2001)Google Scholar
  29. 29.
    J. Kikuchi, A. Ikeda, M. Hashizume, Biomimetic Materials: Encyclopedia of Biomaterials and Biomedical Engineering (Marcel Dekker, New York, 2004)Google Scholar
  30. 30.
    R. Langer, Perspectives: drug delivery—drugs on target. Science 293, 58–59 (2001)CrossRefGoogle Scholar
  31. 31.
    J.Q. Liu, H. Sawai, A new channel coding algorithm based on photo-proteins and GTPases, in 1st International Conference on Bio-Inspired Models of Network, Information, and Computing Systems, Dec. 2006Google Scholar
  32. 32.
    J.Q. Liu, T. Nakano, An information theoretic model of molecular communication based on cellular signalng, in Proceedings of Workshop on Computing and Communications from Biological Systems: Theory and Applications (2007)Google Scholar
  33. 33.
    C. Mavroidis, A. Dubey, M.L. Yarmush, Molecular machines. Annu. Rev. Biomed. Eng. 6, 363–395 (2004)CrossRefGoogle Scholar
  34. 34.
    C.D. Montemagno, Nanomachines: a roadmap for realizing the vision. Biomed J Nanopart Res 3(1), 1–3 (2001)CrossRefGoogle Scholar
  35. 35.
    M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, A design of a molecular communication system for nanomachines using molecular motors. in Proceedings of the Fourth Annual IEEE Conference on Pervasive Computing and Communications Workshops. (IEEE Computer Society, Washington, DC, 2006)Google Scholar
  36. 36.
    M. Moore, A. Enomoto, T. Nakano, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, T. Suda, Molecular-motor based communication on a microtubule topology, 2nd International Workshop on Natural Computing (2007)Google Scholar
  37. 37.
    Y. Moritani, S. Hiyama, T. Suda, Molecular communication among nanomachines using vesicles. in NSTI Nanotechnology Conference and Trade Show (NSTI, Cambridge, 2006)Google Scholar
  38. 38.
    Y. Moritani, S. Hiyama, T. Suda, Molecular communication for health care applications. in Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (IEEE Computer Society, Washington, DC, 2006)Google Scholar
  39. 39.
    T. Nakagaki, H. Yamada, Á. Tóth, Maze-solving by an amoeboid organism. Nature 407, 470 (2000)CrossRefGoogle Scholar
  40. 40.
    T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, K. Arima, Molecular communication for nanomachines using intercellular calcium signaling, in Proceedings of the 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 11–15 (2005)Google Scholar
  41. 41.
    T. Nakano, T. Suda, T. Koujin, T. Haraguchi, Y. Hiraoka, Molecular communication through gap junction channels: system design, experiments and modeling, in Proceedings of the 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2007), Dec. 2007Google Scholar
  42. 42.
    T. Nakano, Y.H. Hsu, W.C. Tang, T. Suda, D. Lin, T. Koujin, T. Haraguchi, Y. Hiraoka, Microplatform for intercellular communication, in Proceedings of the Third Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2008)Google Scholar
  43. 43.
    S. Nomura, Y. Mizutani, K. Kurita, A. Watanabe, K. Akiyoshi, Changes in the morphology of cell-size liposomes in the presence of cholesterol: formation of neuron-like tubes and liposome networks. Biochim. Biophys. Acta 1669(2), 164–169 (2005)CrossRefGoogle Scholar
  44. 44.
    K. Oiwa, H. Sakakibara, Recent progress in dynein structure and mechanism. Curr. Opin. Cell Biol. 17, 98–103 (2005)CrossRefGoogle Scholar
  45. 45.
    N.A. Peppas, Y. Huang, Nanoscale technology of mucoadhesive interactions. Adv. Drug Deliv. Rev. 56, 1675–1687 (2004)CrossRefGoogle Scholar
  46. 46.
    T.D. Schneider, Theory of molecular machines I. Channel capacity of molecular machines. J. Theor. Biol. 148, 83–123 (1991)CrossRefGoogle Scholar
  47. 47.
    T. Shima, T. Kon, K. Imamula, R. Ohkura, K. Sutoh, Two modes of microtubule sliding driven by cytoplasmic dynein. Proc. Nat. Acad. Sci. 103(47), 17736–17740 (2006)CrossRefGoogle Scholar
  48. 48.
    J.M. Smith, The concept of information in biology. Philos. Sci. 67(2), 177–194 (2000)CrossRefMathSciNetGoogle Scholar
  49. 49.
    T. Suda, M. Moore, T. Nakano, R. Egashira, A. Enomoto, Exploratory research on molecular communication between nanomachines. in 2005 Genetic and Evolutionary Computation Conference, Late-breaking Papers (ACM press, New York, 2005)Google Scholar
  50. 50.
    R.H. Tamarin, Principles of genetics (WCB/McGraw-Hill, New York, 1999)Google Scholar
  51. 51.
    S. Toba, K. Oiwa, Swing or embrace? New aspects of motility inspired by dynein structure in situ. Bioforum Eur. 10, 14–16 (2006)Google Scholar
  52. 52.
    K. Wakabayashi, M. Yamamura, A realization of information gate by using enterococcus faecalis pheromone system, DNA7, LNCS 2340, pp. 269–278 (2002)Google Scholar
  53. 53.
    R. Weiss, T.F. Knight, Engineered communications for microbial robotics. DNA computing. in 6th International Meeting on DNA Based Computers, DNA, 2000 (Springer Lecture Notes in Computer Science, 2054, New York, 2000)Google Scholar
  54. 54.
    R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Netravali, Genetic circuit building blocks for cellular computation, communications, and signal processing, Nat. Comput. vol. 2, pp. 47–84 (2003)Google Scholar
  55. 55.
    G.-Z. Yang, (ed.), Body sensor networks, Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Osaka UniversityOsakaJapan
  2. 2.University of CaliforniaIrvineUSA

Personalised recommendations