Skip to main content

BAT: A New Biclustering Analysis Toolbox

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNBI,volume 6268)

Abstract

In this paper, a new biclustering analysis toolbox called BAT, which is based on the BiHEA (Biclustering via a Hybrid Evolutionary Algorithm), is presented. The BiHEA is a memetic approach that integrates a Multi-Objective Evolutionary Algorithm (MOEA) with a local search technique in order to perform microarray biclustering. This method simultaneously considers several goals for optimization, giving as a result a set of biclusters that present a satisfactory trade-off between all of them. The novel software introduced in this article provides the possibility of running the BiHEA along with several pre-processing facilities for the input data and different visualization and statistical tools for the analysis of the biclusters.

Keywords

  • microarray analysis
  • biclustering
  • multi-objective evolutionary computing
  • software toolbox

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15060-9_8
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-15060-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Madeira, S., Oliveira, A.: Biclustering algorithms for biological data analysis: A survey. IEEE-ACM Trans. Comput. Biol. Bioinform. 1, 24–45 (2004)

    CrossRef  Google Scholar 

  2. Madeira, S., Oliveira, A.: A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series. Algorithm Mol. Biol. 4(1), 8 (2009)

    CrossRef  Google Scholar 

  3. Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pp. 93–103. AAAI Press, Menlo Park (2000)

    Google Scholar 

  4. DiMaggio, P., McAllister, S., Floudas, C., Feng, X.J., Rabinowitz, J., Rabitz, H.: Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies. BMC Bioinformatics 9(1), 458 (2008)

    CrossRef  Google Scholar 

  5. Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39(12), 2464–2477 (2006)

    MATH  CrossRef  Google Scholar 

  6. Bleuler, S., Prelić, A., Zitzler, E.: An EA framework for biclustering of gene expression data. In: Congress on Evolutionary Computation, pp. 166–173 (2004)

    Google Scholar 

  7. Gallo, C.A., Carballido, J.A., Ponzoni, I.: Bihea: A hybrid evolutionary approach for microarray biclustering. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) Advances in Bioinformatics and Computational Biology. LNCS, vol. 5676, pp. 36–47. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  8. Oba, S., Sato, M., Takemasa, I., Monden, M., Matsubara, K.: A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19(16), 2088–2096 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gallo, C.A., Dussaut, J.S., Carballido, J.A., Ponzoni, I. (2010). BAT: A New Biclustering Analysis Toolbox. In: Ferreira, C.E., Miyano, S., Stadler, P.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2010. Lecture Notes in Computer Science(), vol 6268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15060-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15060-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15059-3

  • Online ISBN: 978-3-642-15060-9

  • eBook Packages: Computer ScienceComputer Science (R0)