Skip to main content

An SVM Model Based on Physicochemical Properties to Predict Antimicrobial Activity from Protein Sequences with Cysteine Knot Motifs

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNBI,volume 6268)

Abstract

The cysteine knot motifs are widely spread in several classes of peptides including those with antimicrobial functions. These motifs offer a major stability to the protein structure. Nevertheless, the antimicrobial activity is modulated by physicochemical properties. In this paper, we create a model of support vector machine to predict antimicrobial activity from sequences with similar motifs, based on physicochemical properties: net charge, ratio between hydrophobic and charged residues, average hydrophobicity and hydrophobic moment. The support vector machine model was trained with 146 antimicrobial peptides with six cysteines from the antimicrobial peptides database and an equal number of random sequences predicted as transmembrane proteins. The polynomial kernel shows the best accuracy (77.4%) on 10-fold cross validation. Testing in a blind dataset, we observe an accuracy of 83.02%. Through this model, proteins of varied size with a cysteine knot motif can be predicted with good reliability.

Keywords

  • Support Vector Machine
  • Antimicrobial Peptides
  • Physicochemical Properties
  • Cysteine Knot Motif
  • Machine Learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15060-9_6
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-15060-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brogden, K.A.: Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nature Microbiology 3, 238–250 (2005)

    CrossRef  Google Scholar 

  2. Lata, S., Sharma, B.K., Raghava, G.P.S.: Analysis and Prediction of Antibacterial Peptides. BMC Bioinformatics 8, 263 (2007)

    CrossRef  Google Scholar 

  3. Wang, Z., Wang, G.: APD: the Antimicrobial Peptide Database. Nucl. Acids Res. 32, D590–D592 (2004)

    CrossRef  Google Scholar 

  4. Loose, C., Jensen, K., Rigoutsos, I., Sphanopoulos, G.: A Linguistic Model for the Rational Design of Antimicrobial Peptides. Nature 443(19), 867–869 (2006)

    CrossRef  Google Scholar 

  5. Dathe, M., Wieprecht, T., Nikolenko, H., Handel, L., Maloy, W.L., MacDonald, D.L., Beyermann, M., Bienert, M.: Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and hemolytic activity of amphipathic helical peptides. FEBS Letters 403, 208–212 (1997)

    CrossRef  Google Scholar 

  6. Mygind, P.H., Fischer, R.L., Schnorr, K.M., Hansen, M.T., Sönksen, C.P., Ludvignsen, S., Raventós, D., Buskov, S., Christensen, B., De Maria, L., Taboureau, O., Yaver, D., Elvig-Jørgensen, S.G., Sørensen, M.V., Christensen, B.E., Kjærulff, S., Frimodt-Moller, N., Lehrer, R.I., Zasloff, M., Kristensen, H.H.: Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437(13), 975–980 (2005)

    CrossRef  Google Scholar 

  7. Ganz, T.: Defensins: Antimicrobial Peptides of Innate Immunity. Nature Immunology 3, 710–720 (2003)

    CrossRef  Google Scholar 

  8. Craik, D.J.: Plant Cyclotides: Circular, Knotted Peptide Toxins. Toxicon 39, 1809–1813 (2001)

    CrossRef  Google Scholar 

  9. Waterhouse, A.M., Procter, J.B., Martin, D.M.A., Clamp, M., Barton, G.J.: Jalview Version 2 - a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9), 1189–1191 (2009)

    CrossRef  Google Scholar 

  10. Käll, L., Krogh, A., Sonnhammer, E.L.L.: Advantages of Combined Transmembrane Topology and Signal Peptide Prediction–the Phobius web server. Nucl. Acids Res. 35, W429–W432 (2007)

    CrossRef  Google Scholar 

  11. Eisenberg, D., Weiss, R.M., Terwilliger, T.C.: The Hydrophobic Moment Detects Periodicity in Protein Hydrophobicity. Proc. Natl. Acad. Sci. 81, 140–144 (1984)

    CrossRef  Google Scholar 

  12. Comprehensive Perl Archive Network, http://search.cpan.org/~lairdm/Algorithm-SVM-0.11/lib/Algorithm/SVM.pm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Porto, W.F., Fernandes, F.C., Franco, O.L. (2010). An SVM Model Based on Physicochemical Properties to Predict Antimicrobial Activity from Protein Sequences with Cysteine Knot Motifs. In: Ferreira, C.E., Miyano, S., Stadler, P.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2010. Lecture Notes in Computer Science(), vol 6268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15060-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15060-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15059-3

  • Online ISBN: 978-3-642-15060-9

  • eBook Packages: Computer ScienceComputer Science (R0)