Skip to main content

Discretization of Flexible-Receptor Docking Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6268))

Abstract

A careful analysis of flexible-receptor molecular docking results, particularly those related to details of receptor-ligand interactions, is essential to improve the process of docking and the understanding of intermolecular recognition. Because flexible-receptor docking simulations generate large amounts of data, their manual analysis is impractical. We intend to apply classification decision trees algorithms to better understand this type of docking results. However, prior to that we need to discretize the target attribute, which in this work is the estimated Free Energy of Binding (FEB) of the flexible receptor-ligand interactions. Here we compare three different discretization methods, by equal frequency (1), by equal width (2) and our proposed method, based on the mode and standard deviation (3) of the FEB values.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lengauer, T., Rarey, M.: Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 6, 402–406 (1996)

    Article  Google Scholar 

  2. Morris, G., Goodsell, D., Halliday, R., Huey, R., Hart, W., Belew, R., Olson, A.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    Article  Google Scholar 

  3. Machado, K., Schroeder, E., Ruiz, D., Norberto de Souza, O.: Automating Molecular Docking with Explicit Receptor Flexibility Using Scientific Workflows. In: Sagot, M.-F., Walter, M.E.M.T. (eds.) BSB 2007. LNCS (LNBI), vol. 4643, pp. 1–11. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. van Gunsteren, W., Berendsen, H.: Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990)

    Article  Google Scholar 

  5. Lin, J.-H., Perryman, A., Schames, J.R., McCammon, J.A.: Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J. Am. Chem. Soc. 124, 5632–5633 (2002)

    Article  Google Scholar 

  6. Schroeder, E., Basso, L., Santos, D., Norberto de Souza, O.: Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Biophys. J. 89, 876–884 (2005)

    Article  Google Scholar 

  7. Tan, P., Steinbach, M., Kumar, V.: Introduction to data mining. Addison Wesley, Boston (2006)

    Google Scholar 

  8. Dessen, A., Quémard, A., Blanchard, J., Jacobs Jr., W., Sacchettini, J.: Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267, 1638–1641 (1995)

    Article  Google Scholar 

  9. Oliveira, J., Souza, E., Basso, L., Palaci, M., Dietze, R., Santos, D., Moreira, I.: An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Chem. Commun. 3, 312–313 (2004)

    Article  Google Scholar 

  10. Kuo, M., et al.: Targeting tuberculosis and malaria through inhibition of Enoyl reductase: compound activity and structural data. J. Biol. Chem. 278, 20851–20859 (2003)

    Article  Google Scholar 

  11. Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K., Wilson, T., Collins, D., de Lisle, G., Jacobs Jr., W.: InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994)

    Article  Google Scholar 

  12. Winck, A., Machado, K., Norberto de Souza, O., Ruiz, D.: FReDD: supporting mining strategies through a flexible receptor docking database. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) Advances in Bioinformatics and Computational Biology. LNCS, vol. 5676, pp. 143–146. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: The Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, USA, pp. 194–202 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Machado, K.S., Winck, A.T., Ruiz, D.D., de Souza, O.N. (2010). Discretization of Flexible-Receptor Docking Data. In: Ferreira, C.E., Miyano, S., Stadler, P.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2010. Lecture Notes in Computer Science(), vol 6268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15060-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15060-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15059-3

  • Online ISBN: 978-3-642-15060-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics