Skip to main content

Discretization of Flexible-Receptor Docking Data

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNBI,volume 6268)

Abstract

A careful analysis of flexible-receptor molecular docking results, particularly those related to details of receptor-ligand interactions, is essential to improve the process of docking and the understanding of intermolecular recognition. Because flexible-receptor docking simulations generate large amounts of data, their manual analysis is impractical. We intend to apply classification decision trees algorithms to better understand this type of docking results. However, prior to that we need to discretize the target attribute, which in this work is the estimated Free Energy of Binding (FEB) of the flexible receptor-ligand interactions. Here we compare three different discretization methods, by equal frequency (1), by equal width (2) and our proposed method, based on the mode and standard deviation (3) of the FEB values.

Keywords

  • discretization
  • molecular docking
  • flexible receptor
  • data mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15060-9_10
  • Chapter length: 5 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-15060-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lengauer, T., Rarey, M.: Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 6, 402–406 (1996)

    CrossRef  Google Scholar 

  2. Morris, G., Goodsell, D., Halliday, R., Huey, R., Hart, W., Belew, R., Olson, A.: Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998)

    CrossRef  Google Scholar 

  3. Machado, K., Schroeder, E., Ruiz, D., Norberto de Souza, O.: Automating Molecular Docking with Explicit Receptor Flexibility Using Scientific Workflows. In: Sagot, M.-F., Walter, M.E.M.T. (eds.) BSB 2007. LNCS (LNBI), vol. 4643, pp. 1–11. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  4. van Gunsteren, W., Berendsen, H.: Computer simulation of molecular dynamics: methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990)

    CrossRef  Google Scholar 

  5. Lin, J.-H., Perryman, A., Schames, J.R., McCammon, J.A.: Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J. Am. Chem. Soc. 124, 5632–5633 (2002)

    CrossRef  Google Scholar 

  6. Schroeder, E., Basso, L., Santos, D., Norberto de Souza, O.: Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. Biophys. J. 89, 876–884 (2005)

    CrossRef  Google Scholar 

  7. Tan, P., Steinbach, M., Kumar, V.: Introduction to data mining. Addison Wesley, Boston (2006)

    Google Scholar 

  8. Dessen, A., Quémard, A., Blanchard, J., Jacobs Jr., W., Sacchettini, J.: Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267, 1638–1641 (1995)

    CrossRef  Google Scholar 

  9. Oliveira, J., Souza, E., Basso, L., Palaci, M., Dietze, R., Santos, D., Moreira, I.: An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Chem. Commun. 3, 312–313 (2004)

    CrossRef  Google Scholar 

  10. Kuo, M., et al.: Targeting tuberculosis and malaria through inhibition of Enoyl reductase: compound activity and structural data. J. Biol. Chem. 278, 20851–20859 (2003)

    CrossRef  Google Scholar 

  11. Banerjee, A., Dubnau, E., Quemard, A., Balasubramanian, V., Um, K., Wilson, T., Collins, D., de Lisle, G., Jacobs Jr., W.: InhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994)

    CrossRef  Google Scholar 

  12. Winck, A., Machado, K., Norberto de Souza, O., Ruiz, D.: FReDD: supporting mining strategies through a flexible receptor docking database. In: Guimarães, K.S., Panchenko, A., Przytycka, T.M. (eds.) Advances in Bioinformatics and Computational Biology. LNCS, vol. 5676, pp. 143–146. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  13. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: The Proceedings of the 12th International Conference on Machine Learning, Tahoe City, CA, USA, pp. 194–202 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Machado, K.S., Winck, A.T., Ruiz, D.D., de Souza, O.N. (2010). Discretization of Flexible-Receptor Docking Data. In: Ferreira, C.E., Miyano, S., Stadler, P.F. (eds) Advances in Bioinformatics and Computational Biology. BSB 2010. Lecture Notes in Computer Science(), vol 6268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15060-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15060-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15059-3

  • Online ISBN: 978-3-642-15060-9

  • eBook Packages: Computer ScienceComputer Science (R0)