Skip to main content

Alignment and Orientation of Hexapole State-Selected Molecules

  • Chapter
  • First Online:
  • 717 Accesses

Part of the book series: Springer Series in Chemical Physics ((PUILS,volume 99))

Abstract

The ability to control the orientation of small polar molecules is an important step toward experiments such as X-ray diffraction and high-harmonic generation, where structural information or ultrafast molecular dynamics can be reconstructed in the molecular frame. We present experiments where we have combined hexapole state-selection and the application of a strong DC electric field with the use of short, intense shaped laser pulses in order to demonstrate and optimize impulsive alignment and orientation of NO molecules under field-free conditions. Good agreement of the experimental results with theoretical predictions is found. In addition, impulsive alignment and orientation was investigated theoretically for a set of molecules that can be used state-selected by means of hexapole focusing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. Kling, M.J.J. Vrakking, An. Rev. Phys. Chem. 59, 463 (2008)

    Article  ADS  Google Scholar 

  2. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  3. F. Schotte et al., Science 300, 1944 (2003)

    Article  ADS  Google Scholar 

  4. W. Ackermann et al., Nat. Phot. 1, 336 (2007)

    Article  Google Scholar 

  5. P. Emma, For the LCLS Commissioning Team. First Lasing of the LCLS X-ray FEL at 1.5 Angstroem (2009)

    Google Scholar 

  6. A. Landers et al., Phys. Rev. Lett. 87, 013002 (2001)

    Article  ADS  Google Scholar 

  7. J. Ullrich et al., Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  8. P. Johnsson, A. Rouzée et al., J. Phys. B 42, 134017 (2009)

    Article  ADS  Google Scholar 

  9. R. Velotta, N. Hay et al., Phys. Rev. Lett. 87, 183901 (2001)

    Article  ADS  Google Scholar 

  10. M. Meckel, Comtois et al., Science, 320, 1478 (2008)

    Google Scholar 

  11. J. Itatani, J. Levesque et al., Nature 432, 867 (2004)

    Article  ADS  Google Scholar 

  12. R. Torres, N. Kajumba et al., Phys. Rev. Lett. 98, 203007 (2007)

    Article  ADS  Google Scholar 

  13. T. Kanai, S. Minemoto, H. Sakai., Nature 435, 470 (2005)

    Google Scholar 

  14. C.Z. Bisgaard, O.J. Clarkin et al., Science 323, 5920 (2009)

    Article  Google Scholar 

  15. H. Stapelfeldt, T. Seideman, Rev. Mod. Phys. 75, 543 (2003)

    Article  ADS  Google Scholar 

  16. T. Seideman, E. Hamilton., Adv. At. Mol. Phys. 52, 289 (2006)

    Google Scholar 

  17. B. Friedrich, D. Herschbach., J. Phys. Chem. 99, 15686 (1995)

    Google Scholar 

  18. J.J. Larsen, H. Sakai et al., J. Chem. Phys. 111, 7774 (1999)

    Article  ADS  Google Scholar 

  19. H. Sakai, C.P. Safvan et al., J. Chem. Phys. 110, 10235 (1999)

    Article  ADS  Google Scholar 

  20. J.J. Larsen, K. Hald et al., Phys. Rev. Lett. 85, 2470 (2000)

    Article  ADS  Google Scholar 

  21. F. Rosca-Pruna, M.J.J. Vrakking, Phys. Rev. Lett. 87, 153902 (2001)

    Article  ADS  Google Scholar 

  22. E. Péronne, M.D. Poulsen et al., Phys. Rev. Lett. 91, 043003 (2003)

    Article  ADS  Google Scholar 

  23. M.J.J. Vrakking, S. Stolte, Chem. Phys. Lett. 271, 209 (1997)

    Article  ADS  Google Scholar 

  24. C. M. Dion, A. D. Bandrauk et al., Chem. Phys. Lett. 302, 215 (1999)

    Article  ADS  Google Scholar 

  25. M. Machholm, N.E. Henriksen., Phys. Rev. Lett. 87, 193001 (2001)

    Google Scholar 

  26. C.M. Dion, A. Keller, O. Atabek., Eur. Phys. J. D 14, 239 (2001)

    Google Scholar 

  27. B. Friedrich, D. Herschbach., J. Chem. Phys. 111, 6157 (1999)

    Google Scholar 

  28. H. Sakai, S. Minemoto et al., Phys. Rev. Lett. 90, 83001 (2003)

    Article  ADS  Google Scholar 

  29. A. Goban, S. Minemoto, H. Sakai, Phys. Rev. Lett. 101, 013001 (2008)

    Article  ADS  Google Scholar 

  30. R. Baumfalk, N.H. Nahler, U. Buck, J. Chem. Phys. 114, 4755 (2001)

    Article  ADS  Google Scholar 

  31. B. Friedrich, N.H. Nahler, U. Buck, J. Mod. Optic. 50, 2677 (2003)

    ADS  Google Scholar 

  32. O. Ghafur, A. Rouzée et al., Nat. Phys. 5, 1225 (2009)

    Article  Google Scholar 

  33. A. Rouzee, A. Gijsbertsen et al., N. J. P., 11, 105040 (2009)

    Article  Google Scholar 

  34. S.R. Gandhi, R.B. Bernstein et al., J. Chem. Phys. 87, 6457 (1987)

    Article  ADS  Google Scholar 

  35. G. Herzberg, in Spectra of Diatomic Molecules. Molecular Spectra and Molecular Structure, vol 1 (Van Nostrand and Reinhold Company, New York, 1960)

    Google Scholar 

  36. R.N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemisty and Physics (Wiley, New York, 1988)

    Google Scholar 

  37. J.M. Holas, Modern Spectroscopy, 3rd edn. (Krieger, Malabar, 1996)

    Google Scholar 

  38. C. Amiot, J. Molec. Spectrosc. 84, 150 (1982)

    Article  ADS  Google Scholar 

  39. M.J.L. de Lange, Steric and State-to-State Depedence of Rotationally Inelastic Scattering of NO, Thesis (Vrije Universiteit, Amsterdam, 2003)

    Google Scholar 

  40. C.A. Burrus, W. Gordy, Phys. Rev. 92, 1437 (1953)

    Article  ADS  Google Scholar 

  41. W.L. Meerts, A. Dymanus, J. Molec. Spectrosc. 44, 320 (1972)

    Article  ADS  Google Scholar 

  42. J.M.L.J. Reinartz, W.L. Meertz, A. Dymanus, Chem. Phys. Lett. 16, 576 (1972)

    Article  ADS  Google Scholar 

  43. B.J. Drouin, F.W. Maiwald, J. Molec. Spectrosc. 236, 260 (2006)

    Article  ADS  Google Scholar 

  44. H.G. Bennewitz, W. Paul, Ch. Schlier, Z. Phys. 141, 6 (1955)

    Article  ADS  Google Scholar 

  45. R.W. Anderson, J. Phys. Chem. 101, 1664 (1997)

    Google Scholar 

  46. K.H. Kramer, R.B. Bernstein, J. Chem. Phys. 42, 767 (1965)

    Article  ADS  Google Scholar 

  47. S. Stolte, J. Reuss, H.L. Schwartz, Physica 57, 254 (1972)

    Article  ADS  Google Scholar 

  48. A. Gijsbertsen, W. Siu et al., Phys. Rev. Lett. 99, 213003 (2007)

    Article  ADS  Google Scholar 

  49. T. Seideman, Phys. Rev. Lett. 83, 4971 (1999)

    Article  ADS  Google Scholar 

  50. S.R. Gandhi, T.J. Curtiss et al., J. Chem. Phys. 132, 6 (1986)

    Google Scholar 

  51. P.Th. van Duijnen, M. Swart, J. Phys. Chem. A. 102, 2399 (1998)

    Article  Google Scholar 

  52. A.T.J.B. Eppink, D.H. Parker, Rev. Sci. Instrum. 68, 3477 (1997)

    Article  ADS  Google Scholar 

  53. A.M. Wiener, Rev. Sci. Instrum. 71, 1929 (2000)

    Article  ADS  Google Scholar 

  54. C.H. Townes, A.L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1955)

    Google Scholar 

  55. M. Drabbels, A.M. Wodtke, Chem. Phys. Lett. 256, 8 (1996)

    Article  ADS  Google Scholar 

  56. A. Gijsbertsen, H. Linnartz et al., Phys. Scr. 72, C1 (2005)

    Article  Google Scholar 

  57. A. Gijsbertsen, M.J.L. de Lange et al., Chem. Phys. 301, 293 (2004)

    Article  ADS  Google Scholar 

  58. B. Friedrich, D.R. Herschbach, J. Phys. Chem. A 103, 10280 (1999)

    Article  Google Scholar 

  59. L. Cai, J. Marango, B. Friedrich, Phys. Rev. Lett. 86, 775 (2001)

    Article  ADS  Google Scholar 

  60. V. Renard, M. Renard et al., Phys. Rev. A 70, 033420 (2004)

    Article  ADS  Google Scholar 

  61. L. Holmegaard, J.H. Nielsen et al., Phys. Rev. Lett. 102, 023001 (2009)

    Article  ADS  Google Scholar 

  62. M. Leibscher, I.Sh. Averbukh, H. Rabitz, Phys. Rev. Lett. 90, 213001 (2003)

    Article  ADS  Google Scholar 

  63. C.Z. Bisgaard, S.S. Viftrup et al., Phys. Rev. Lett. 92, 173004 (2004)

    Article  ADS  Google Scholar 

  64. T. Suzuki, Y. Sugawara et al., Phys. Rev. Lett. 100, 033603 (2008)

    Article  ADS  Google Scholar 

  65. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992)

    Article  ADS  Google Scholar 

  66. A. Assion, T. Baumert et al., Science 282, 919 (1998)

    Article  ADS  Google Scholar 

  67. R.J. Levis, G.M. Menkir et al., Science 292, 709 (2001)

    Article  ADS  Google Scholar 

  68. E. Hertz, A. Rouzée et al., Phys. Rev. A 75, 031403(R) (2007)

    Google Scholar 

  69. A. Rouzée, E. Hertz et al., J. Phys. B 41, 074002 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge O. Ghafur, W. Siu, and S. Stolte, who have been involved in all the experiments presented in this chapter. The authors thank P. Johnsson for fruitfull discussions. This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM),” which is financially supported by the “Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Rouzée .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rouzée, A., Gijsbertsen, A., Vrakking, M.J.J. (2010). Alignment and Orientation of Hexapole State-Selected Molecules. In: Yamanouchi, K., Gerber, G., Bandrauk, A. (eds) Progress in Ultrafast Intense Laser Science VI. Springer Series in Chemical Physics, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15054-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15054-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15053-1

  • Online ISBN: 978-3-642-15054-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics