Skip to main content

A Different Perspective on a Scale for Pairwise Comparisons

  • Conference paper

Part of the Lecture Notes in Computer Science book series (TCCI,volume 6220)

Abstract

One of the major challenges for collective intelligence is inconsistency, which is unavoidable whenever subjective assessments are involved. Pairwise comparisons allow one to represent such subjective assessments and to process them by analyzing, quantifying and identifying the inconsistencies.

We propose using smaller scales for pairwise comparisons and provide mathematical and practical justifications for this change. Our postulate’s aim is to initiate a paradigm shift in the search for a better scale construction for pairwise comparisons. Beyond pairwise comparisons, the results presented may be relevant to other methods using subjective scales.

Keywords

  • Pairwise comparisons
  • collective intelligence
  • scale
  • subjective assessment
  • inaccuracy
  • inconsistency

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-15034-0_5
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-15034-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anholcer, M., Babiy, V., Bozóki, S., Koczkodaj, W.W.: A simplified implementation of the least squares solution for pairwise comparisons matrices. Central European Journal of Operations Research (to appear)

    Google Scholar 

  2. Basile, L., D’Apuzzo, L., Marcarelli, G., Squillante, M.: Generalized Consistency and Representation of Preferences by Pairwise Comparisons. In: Panamerican Conference of Applied Mathematics, Huatulco, Mexico (2006)

    Google Scholar 

  3. Blankmeyer, E.: Approaches to consistency adjustments. Journal of Optimization Theory and Applications 54, 479–488 (1987)

    MATH  CrossRef  MathSciNet  Google Scholar 

  4. Bozóki, S.: A method for solving LSM problems of small size in the AHP. Central European Journal of Operations Research 11, 17–33 (2003)

    MATH  Google Scholar 

  5. Bozóki, S.: Solution of the least squares method problem of pairwise comparisons matrices. Central European Journal of Operations Research 16, 345–358 (2008)

    MATH  CrossRef  Google Scholar 

  6. Bozóki, S., Rapcsák, T.: On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. Journal of Global Optimization 42(2), 157–175 (2007)

    CrossRef  Google Scholar 

  7. Brunelli, M., Fedrizzi, M.: Fair Consistency Evaluation in Fuzzy Preference Relations and in AHP. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part II. LNCS (LNAI), vol. 4693, pp. 612–618. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  8. Bullions, P.: The Principles of English Grammar, 16th edn. Pratt, Woodford, & Co. (1846)

    Google Scholar 

  9. Cavallo, B., D’Apuzzo, L.: A general unified framework for pairwise comparison matrices in multicriterial methods. International Journal of Intelligent Systems 24(4), 377–398 (2009)

    MATH  CrossRef  Google Scholar 

  10. Chu, A.T.W., Kalaba, R.E., Spingarn, K.: A comparison of two methods for determining the weight belonging to fuzzy sets. Journal of Optimization Theory and Applications 4, 531–538 (1979)

    CrossRef  MathSciNet  Google Scholar 

  11. Choo, E.U., Wedley, W.C.: A common framework for deriving preference values from pairwise comparison matrices. Computers and Operations Research 31, 893–908 (2004)

    MATH  CrossRef  Google Scholar 

  12. Condorcet, M.: Essai sur l’Application de l’Analyse à la Probabilité des Décisions Rendues à la Pluralité des Voix, Paris (1785)

    Google Scholar 

  13. Crawford, G., Williams, C.: A note on the analysis of subjective judgment matrices. Journal of Mathematical Psychology 29, 387–405 (1985)

    MATH  CrossRef  Google Scholar 

  14. D’Apuzzo, L., Marcarelli, G., Squillante, M.: Generalized consistency and intensity vectors for comparison matrices. International Journal of Intelligent Systems 22(12), 1287–1300 (2007)

    MATH  CrossRef  Google Scholar 

  15. Debreu, G.: Topological methods in cardinal utility theory. In: Arrow, K.J., Karlin, S., Suppes, P. (eds.) Mathematical Methods in the Social Sciences, pp. 16–26. Stanford University Press, Stanford (1960)

    Google Scholar 

  16. De Jong, P.: A statistical approach to Saaty’s scaling method for priorities. Journal of Mathematical Psychology 28, 467–478 (1984)

    MATH  CrossRef  MathSciNet  Google Scholar 

  17. Farkas, A., Lancaster, P., Rózsa, P.: Consistency adjustment for pairwise comparison matrices. Numer. Linear Algebra Applications 10, 689–700 (2003)

    MATH  CrossRef  Google Scholar 

  18. Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A.: On the issue of consistency in dynamical consensual aggregation. In: Bouchon Meunier, B., Gutierrez Rios, J., Magdalena, L., Yager, R.R. (eds.) Technologies for Constructing Intelligent Systems. Studies in Fuzziness and Soft Computing, vol. 1, 89, pp. 129–137. Springer, Heidelberg (2002)

    Google Scholar 

  19. Fedrizzi, M., Giove, S.: Incomplete pairwise comparison and consistency optimization. European Journal of Operational Research 183(1), 303–313 (2007)

    MATH  CrossRef  Google Scholar 

  20. Fülöp, J.: A method for approximating pairwise comparison matrices by consistent matrices. Journal of Global Optimization 42, 423–442 (2008)

    MATH  CrossRef  Google Scholar 

  21. Golany, B., Kress, M.: A multicriteria evaluation method for obtaining weights from ratio-scale matrices. European Journal of Operational Research 69, 210–220 (1993)

    MATH  CrossRef  Google Scholar 

  22. Holsztynski, W., Koczkodaj, W.W.: Convergence of inconsistency algorithms for the pairwise comparisons. Information Processing Letters 59(4), 197–202 (1996)

    MATH  CrossRef  MathSciNet  Google Scholar 

  23. Hubbard, D.: How to measure anything. Wiley, Chichester (2007)

    Google Scholar 

  24. Jensen, R.E.: Comparison of eigenvector, least squares, chi squares and logarithmic least squares methods of scaling a reciprocal matrix, working paper 153, Trinity, University (1983)

    Google Scholar 

  25. Jensen, R.E.: Alternative scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 28, 317–332 (1984)

    CrossRef  Google Scholar 

  26. Koczkodaj, W.W.: A new definition of consistency of pairwise comparisons. Mathematical and Computer Modelling 18(7), 79–84 (1993)

    MATH  CrossRef  Google Scholar 

  27. Koczkodaj, W.W., Szarek, S.J.: On distance-based inconsistency reduction algorithms for pairwise comparisons. Logic Journal of IGPL (2010) (advance access published January 17, 2010)

    Google Scholar 

  28. Luce, R.D., Edwards, W.: The derivation of subjective scales from just noticeable differences. Psychological Review 65(4), 222–237 (1958)

    CrossRef  Google Scholar 

  29. Luce, R.D., Tukey, J.W.: Simultaneous conjoint measurement: a new scale type of fundamental measurement. Journal of Mathematical Psychology 1, 1–27 (1964)

    MATH  CrossRef  Google Scholar 

  30. Llull, R.: Artifitium electionis personarum (before 1283)

    Google Scholar 

  31. Mikhailov, L.: A fuzzy programming method for deriving priorities in the analytic hiarerchy process. Journal of the Operational Research Society 51, 341–349 (2000)

    MATH  Google Scholar 

  32. Nagel, E.: Measurement. Erkenntnis 2(1), 313–335 (1931)

    CrossRef  Google Scholar 

  33. Nguyen, N.T.: Advanced method in Inconsistency Knowledge Management, p. 356. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  34. Saaty, T.L.: A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15, 234–281 (1977)

    MATH  CrossRef  MathSciNet  Google Scholar 

  35. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  36. Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)

    CrossRef  Google Scholar 

  37. Thurstone, L.L.: A law of comparative judgement. Psychological Review 34, 278–286 (1927)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fülöp, J., Koczkodaj, W.W., Szarek, S.J. (2010). A Different Perspective on a Scale for Pairwise Comparisons. In: Nguyen, N.T., Kowalczyk, R. (eds) Transactions on Computational Collective Intelligence I. Lecture Notes in Computer Science, vol 6220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15034-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15034-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15033-3

  • Online ISBN: 978-3-642-15034-0

  • eBook Packages: Computer ScienceComputer Science (R0)