Skip to main content

ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 6225)

Abstract

This paper describes and analyzes the security of a general-purpose cryptographic function design, with application in RFID tags and sensor networks. Based on these analyzes, we suggest minimum parameter values for the main components of this cryptographic function, called ARMADILLO. With fully serial architecture we obtain that 2 923 GE could perform one compression function computation within 176 clock cycles, consuming 44 μW at 1 MHz clock frequency. This could either authenticate a peer or hash 48 bits, or encrypt 128 bits on RFID tags. A better tradeoff would use 4 030 GE, 77 μW of power and 44 cycles for the same, to hash (resp. encrypt) at a rate of 1.1 Mbps (resp. 2.9 Mbps). As other tradeoffs are proposed, we show that ARMADILLO offers competitive performances for hashing relative to a fair Figure Of Merit (FOM).

Keywords

  • Hash Function
  • Power Dissipation
  • Clock Frequency
  • Block Cipher
  • Stream Cipher

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: Present: a Ultra-Lightweight Block Cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  2. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash Functions and RFID Tags: Mind the Gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  3. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN & KTANTAN: a Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  4. De Cannière, C., Preneel, B.: Trivium Specifications. eSTREAM technical report (2006), http://www.ecrypt.eu.org/stream/ciphers/trivium/trivium.pdf

  5. Daemen, J., Govaerts, R., Vandewalle, J.: A Hardware Design Model for Cryptographic Algorithms. In: Deswarte, Y., Quisquater, J.-J., Eizenberg, G. (eds.) ESORICS 1992. LNCS, vol. 648, pp. 419–434. Springer, Heidelberg (1992)

    CrossRef  Google Scholar 

  6. Daemen, J., Govaerts, R., Vandewalle, J.: A Framework for the Design of One-Way Hash Functions Including Cryptanalysis of Damgård One-way Function based on a Cellular Automaton. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 82–96. Springer, Heidelberg (1993)

    Google Scholar 

  7. Damgård, I.B.: A Design Principle for Hash Functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  8. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

    Google Scholar 

  9. Feldhofer, M., Rechberger, C.: A Case Against Currently Used Hash Functions in RFID Protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  10. Garber, D.: Braid Group Cryptography. CoRR, vol. abs/0711.3941, pp. 1–75 (2007)

    Google Scholar 

  11. Good, T., Chelton, W., Benaissa, M.: Hardware Results for Selected Stream Cipher Candidates. Presented at the State of the Art of Stream Ciphers SASC’07, Bochum, Germany (2007)

    Google Scholar 

  12. Hell, M., Johansson, T., Meier, W.: Grain: a Stream Cipher for Constrained Environments. International Journal of Wireless and Mobile Computing 2, 86–93 (2007)

    CrossRef  Google Scholar 

  13. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.S., Lee, C., Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: a New Block Cipher suitable for Low-Resource Device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  14. Lim, C., Korkishko, T.: mCrypton: A Lightweight Block Cipher for Security of Lowcost RFID Tags and Sensors. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  15. Merkle, R.C.: One way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

    Google Scholar 

  16. Moldovyan, A.A., Moldovyan, N.A.: A cipher based on data-dependent permutations. Journal of Cryptology 1(15), 61–72 (2002)

    CrossRef  MathSciNet  Google Scholar 

  17. Ouafi, K., Vaudenay, S.: Pathchecker: An RFID Application for Tracing Products in Supply-Chains. Presented at the International Conference on RFID Security 2009, Leuven, Belgium (2009)

    Google Scholar 

  18. Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Lightweight DES Variants Suited for RFID Applications. In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007)

    Google Scholar 

  19. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-Lightweight Implementations for Smart Devices - Security for 1000 Gate Equivalents. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  20. Secure Hash Standard. Federal Information Processing Standard publication #180-2. U.S. Department of Commerce, National Institute of Standards and Technology (2002)

    Google Scholar 

  21. Tillich, J.P., Zémor, G.: Hashing with SL 2. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)

    Google Scholar 

  22. Wheeler, D.J., Needham, R.M.: TEA: a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)

    Google Scholar 

  23. Yu, Y., Yang, Y., Fan, Y., Min, H.: Security Scheme for RFID Tag. Technical report WP-HARDWARE-022, Auto-ID Labs white paper (2006), http://www.autoidlabs.org/single-view/dir/article/6/230/page.html

  24. Yoshida, H., Watanabe, D., Okeya, K., Kitahara, J., Wu, J., Küçük, Ö., Preneel, B.: MAME: A Compression Function With Reduced Hardware Requirements. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 148–165. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Badel, S. et al. (2010). ARMADILLO: A Multi-purpose Cryptographic Primitive Dedicated to Hardware. In: Mangard, S., Standaert, FX. (eds) Cryptographic Hardware and Embedded Systems, CHES 2010. CHES 2010. Lecture Notes in Computer Science, vol 6225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15031-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15031-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15030-2

  • Online ISBN: 978-3-642-15031-9

  • eBook Packages: Computer ScienceComputer Science (R0)