Influence of Communication Graph Structures on Pheromone-Based Approaches in the Context of a Partitioning Task Problem

  • Thomas Kemmerich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6069)


This paper introduces and formalizes a multi-objective agent coordination problem, called General Online Partitioning Problem (GOPP). The goal is to find a cost-optimal, distance minimizing, and uniform partitioning of an agent set to a set of targets in a 2-dimensional world. Agents build a communication graph based on local neighborhood relations. We propose a message-based Ant Colony Optimization (ACO) algorithm that disposes target-specific pheromones in this communication graph to solve the GOPP. It is analyzed why different typed and newly arriving pheromone traces are unable to grow into once established pheromone structures. Furthermore, an example is presented in which pheromone-based approaches working on communication graphs are unable to find optimal solutions. We present experimental results and compare the new approach to existing ones. Besides the proved non-optimality of our novel approach, the evaluation shows that the algorithm produces high quality solutions on average.


High Quality Solution Communication Graph Agent Coordination Pheromone Concentration Neighbor Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kasbekar, G.S., Kuri, J., Nuggehalli, P.: Online association policies in IEEE 802.11 WLANs. In: 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 1–10. IEEE, Los Alamitos (2006)Google Scholar
  2. 2.
    Bejerano, Y., Han, S.J., Li, L.E.: Fairness and load balancing in wireless LANs using association control. In: Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, pp. 315–329. ACM, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Kube, C.R., Zhang, H.: Collective robotics: From social insects to robots. Adaptive Behavior 2(2), 189–218 (1993)CrossRefGoogle Scholar
  4. 4.
    Groß, R., Dorigo, M.: Cooperative transport of objects of different shapes and sizes. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 106–117. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Groß, R., Dorigo, M.: Evolving a cooperative transport behavior for two simple robots. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 305–316. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Groß, R., Dorigo, M.: Group transport of an object to a target that only some group members may sense. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 852–861. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Groß, R., Tuci, E., Dorigo, M., Bonani, M., Mondada, F.: Object transport by modular robots that self-assemble. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pp. 2558–2564. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  8. 8.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)CrossRefGoogle Scholar
  9. 9.
    Koenig, S., Tovey, C.A., Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A.J., Meyerson, A., Jain, S.: The power of sequential single-item auctions for agent coordination. In: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 1625–1629. AAAI Press, Menlo Park (2006)Google Scholar
  10. 10.
    Koenig, S., Zheng, X., Tovey, C.A., Borie, R., Kilby, P., Markakis, V., Keskinocak, P.: Agent coordination with regret clearing. In: Proceedings of the 23rd National Conference on Artificial Intelligence, pp. 101–107. AAAI Press, Menlo Park (2008)Google Scholar
  11. 11.
    Goebels, A.: Agent Coordination Mechanisms for Solving a Partitioning Task. PhD thesis, University of Paderborn (2006)Google Scholar
  12. 12.
    Goebels, A., Kleine Büning, H., Priesterjahn, S., Weimer, A.: Multi target partitioning of sets based on local information. In: Abraham, A., Dote, Y., Furuhashi, T., Köppen, M., Ohuchi, A., Ohsawa, Y. (eds.) WSTST. Advances in Soft Computing, vol. 29, pp. 1309–1318. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Goebels, A., Kleine Büning, H., Priesterjahn, S., Weimer, A.: Towards online partitioning of agent sets based on local information. In: Fahringer, T., Hamza, M.H. (eds.) Parallel and Distributed Computing and Networks, pp. 674–679. IASTED/ACTA Press (2005)Google Scholar
  14. 14.
    Kemmerich, T.: Algorithms for the general online partitioning problem. Master’s thesis, University of Paderborn (2008)Google Scholar
  15. 15.
    Wehe, B.: Verfahren zur Partitionierung von Multi-Agentensystemen in Szenarien mit Hindernissen. Diploma thesis, University of Paderborn (2008)Google Scholar
  16. 16.
    Šimunić, T., Benini, L., De Micheli, G.: Cycle-accurate simulation of energy consumption in embedded systems. In: Proceedings of the 36th annual ACM/IEEE Design Automation Conference, pp. 867–872. ACM, New York (1999)Google Scholar
  17. 17.
    Mei, Y., Lu, Y.H., Hu, Y.C., Lee, C.G.: A case study of mobile robot’s energy consumption and conservation techniques. In: IEEE International Conference on Advanced Robotics, pp. 492–497 (2005)Google Scholar
  18. 18.
    Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: finding shortest paths through a weighted planar subdivision. J. ACM 38(1), 18–73 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  20. 20.
    Engelbrecht, A.P.: Fundamentals of Computational Swarm Intelligence. Wiley, Chichester (2005)Google Scholar
  21. 21.
    Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the argentine ant. Naturwissenschaften 76, 579–581 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Kemmerich
    • 1
  1. 1.International Graduate School of Dynamic Intelligent Systems Knowledge Based SystemsUniversity of PaderbornGermany

Personalised recommendations