Advertisement

Internal Agent Architecture for Norm Identification

  • Bastin Tony Roy Savarimuthu
  • Stephen Cranefield
  • Maryam A. Purvis
  • Martin K. Purvis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6069)

Abstract

Most works on norms in the multi-agent systems field have concentrated on how norms can be applied to regulate behaviour in agent societies using a top-down approach. In this work, we describe the internal architecture of an agent which identifies what the norm of a society is using a bottom-up approach. The agents infer norms without the norms being given to them explicitly. We demonstrate how the norm associated with using a park can be inferred by an agent using the proposed architecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rymaszewski, M., Au, W.J., Wallace, M., Winters, C., Ondrejka, C., Batstone-Cunningham, B., Rosedale, P.: Second Life: The Official Guide. SYBEX Inc., Alameda (2006)Google Scholar
  2. 2.
    Ullmann-Margalit, E.: The Emergence of Norms. Clarendon Press, Oxford (1977)Google Scholar
  3. 3.
    Coleman, J.: Foundations of Social Theory. Belknap Press (August 1990)Google Scholar
  4. 4.
    Elster, J.: Social norms and economic theory. The Journal of Economic Perspectives 3(4), 99–117 (1989)MathSciNetGoogle Scholar
  5. 5.
    Verhagen, H.: Simulation of the Learning of Norms. Social Science Computer Review 19(3), 296–306 (2001)CrossRefGoogle Scholar
  6. 6.
    Shoham, Y., Tennenholtz, M.: Emergent conventions in multi-agent systems: Initial experimental results and observations (preliminary report). In: KR, pp. 225–231 (1992)Google Scholar
  7. 7.
    Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings of Twentieth International Joint Conference on Artificial Intelligence (IJCAI’07), pp. 1507–1512. AAAI Press, Menlo Park (2007)Google Scholar
  8. 8.
    Axelrod, R.: An evolutionary approach to norms. The American Political Science Review 80(4), 1095–1111 (1986)CrossRefGoogle Scholar
  9. 9.
    Castelfranchi, C., Conte, R., Paolucci, M.: Normative reputation and the costs of compliance. Journal of Artificial Societies and Social Simulation 1(3) (1998)Google Scholar
  10. 10.
    Neumann, M.: A classification of normative architectures. In: Proceedings of World Congress on Social Simulation (2008)Google Scholar
  11. 11.
    Andrighetto, G., Conte, R., Turrini, P., Paolucci, M.: Emergence in the loop: Simulating the two way dynamics of norm innovation. In: Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative Multi-agent Systems, Dagstuhl Seminar Proceedings, vol. 07122. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl (2007)Google Scholar
  12. 12.
    Andrighetto, G., Campenni, M., Cecconi, F., Conte, R.: How agents find out norms: A simulation based model of norm innovation. In: 3rd International Workshop on Normative Multiagent Systems (NorMAS 2008), Luxembourg, July 15-16 (2008)Google Scholar
  13. 13.
    Campenni, M., Andrighetto, G., Cecconi, F., Conte, R.: Normal = normative? the role of intelligent agents in norm innovation. In: The Fifth Conference of the European Social Simulation Association (ESSA), University of Brescia, September 1-5 (2008)Google Scholar
  14. 14.
    Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)CrossRefGoogle Scholar
  15. 15.
    Epstein, J.M.: Learning to be thoughtless: Social norms and individual computation. Comput. Econ. 18(1), 9–24 (2001)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bastin Tony Roy Savarimuthu
    • 1
  • Stephen Cranefield
    • 1
  • Maryam A. Purvis
    • 1
  • Martin K. Purvis
    • 1
  1. 1.Department of Information ScienceUniversity of Otago, DunedinDunedinNew Zealand

Personalised recommendations