Advertisement

Abstract

A social norm is a behavior that emerges as a convention within society without any direction from a central authority. Social norms emerge as repeated interactions between individuals give rise to biases toward actions or behaviors which spread through the society until one behavior is adapted as the default behavior, even when multiple acceptable behaviors exist. Of particular interest to us is how and when norms emerge in social networks, which provide a framework for individuals to interact routinely. We study how quickly norms converge in social networks depending on parameters such as the topology of the network, population size, neighborhood size, and number of behavior alternatives. Our research can be used to model and analyze popular social networks on the Internet such as Facebook, Flickr, and Digg. In addition, it can be used to predict how norms emerge and spread in human societies, ranging from routine decisions like which side of the road to drive on to social trends such as the green phenomenon.

Keywords

Social Norm Multiagent System Neighborhood Size Agent Society Average Path Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Barabási, A.-L.: Topology of evolving networks: Local events and universality. Phys. Rev. Lett. 85(24), 5234–5237 (2000)CrossRefGoogle Scholar
  2. 2.
    Amaral, L., Scala, A., Barthélémy, M., Stanley, H.: Classes of small-world networks. In: Proceedings of the National Academy of Sciences of the United States of America, pp. 11149–11152 (2000)Google Scholar
  3. 3.
    Axelrod, R.: The complexity of cooperation: Agent-based models of conflict and cooperation. Princeton University Press, Princeton (1997)Google Scholar
  4. 4.
    Boella, G., Lesmo, L.: A game theoretic approach to norms. Cognitive Science Quarterly 2(3-4), 492–512 (2002)Google Scholar
  5. 5.
    Boella, G., van der Torre, L.: Norm governed multiagent systems: The delegation of control to autonomous agents. In: Proceedings of IEEE/WIC IAT Conference, pp. 329–335. IEEE Press, Los Alamitos (2003)Google Scholar
  6. 6.
    Boella, G., van der Torre, L., Verhagen, H.: Introduction to the special issue on normative multiagent systems. Autonomous Agents and Multiagent Systems 17(1), 1–10 (2008)CrossRefGoogle Scholar
  7. 7.
    Castelfranchi, C.: Modeling social action for AI agents. Artificial Intelligence 103(1-2), 157–182 (1998)zbMATHCrossRefGoogle Scholar
  8. 8.
    Castelfranchi, C.: Formalising the informal? Dynamic social order, bottom-up social control, and spontaneous normative relations. Journal of Applied Logic 1(1-2), 47–92 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Coleman, J.S.: Norms as social capital. In: Radnitzky, G., Bernholz, P. (eds.) Economic Imperialism: The Economic Approach Applied Outside the Field of Economics. Paragon House, New York (1987)Google Scholar
  10. 10.
    da Silva, V.T.: From the specification to the implementation of norms: an automatic approach to generate rules from norms to govern the behavior of agents. Autonomous Agents and Multiagent Systems 17(1), 113–155 (2008)CrossRefGoogle Scholar
  11. 11.
    Delgado, J., Pujol, J.M., Sanguesa, R.: Emergence of coordination in scale-free networks. Web Intelligence and Agent Systems 1, 131–138 (2003)Google Scholar
  12. 12.
    Dignum, F., Kinny, D., Sonenberg, L.: From desires, obligations and norms to goals. Cognitive Science Quarterly 2(3-4), 407–430 (2002)Google Scholar
  13. 13.
    Elster, J.: Social norms and economic theory. Journal of Economic Perspectives 3(4), 99–117 (1989)MathSciNetGoogle Scholar
  14. 14.
    Epstein, J.M.: Learning to be thoughtless: Social norms and individual computation. Computational Economics 18, 9–24 (2001)zbMATHCrossRefGoogle Scholar
  15. 15.
    Fudenberg, D., Levine, K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  16. 16.
    Garcia-Camino, A., Rodriguez-Aguilar, J., Sierra, C.: Implementing norms in electronic institutions. In: Proceedings of the Fourth International Conference on Autonomous Agents, pp. 667–673. ACM Press, New York (2005)Google Scholar
  17. 17.
    Garcia-Camino, A., Rodriguez-Aguilar, J., Sierra, C., Vasconcelos, W.: A rule-based approach to norm-oriented programming of electronic institutions. ACM SIGecom Exchanges 5(5), 33–41 (2006)CrossRefGoogle Scholar
  18. 18.
    Genesereth, M., Ginsberg, M., Rosenschein, J.: Cooperation without communications. In: Proceedings of the National Conference on Artificial Intelligence, Philadelphia, Pennsylvania, pp. 51–57 (1986)Google Scholar
  19. 19.
    Hume, D.: A Treatise of Human Nature. Oxford University Press, Oxford (1978)Google Scholar
  20. 20.
    Kittock, J.E.: The impact of locality and authority on emergent conventions: Initial observations. In: AAAI, pp. 420–425 (1994)Google Scholar
  21. 21.
    Lewis, D.: Convention: A Philosophical Study. Harvard University Press, Cambridge (1969)Google Scholar
  22. 22.
    Mukherjee, P., Sen, S., Airiau, S.: Norm emergence under constrained interactions in diverse societies. In: Proceedings of the Seventh International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 779–786 (2008)Google Scholar
  23. 23.
    Myerson, R.B.: Game Theory: Analysis of Conflict. Harvard University Press, Cambridge (1991)zbMATHGoogle Scholar
  24. 24.
    Newman, M.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Noble, J., Davy, S., Franks, D.W.: Effects of the topology of social networks on information transmission. In: From Animals to Animats 8: Proceedings of the Eighth International Conference on Simulation of Adaptive Behavior, pp. 395–404 (2004)Google Scholar
  26. 26.
    Nowak, M., May, R.M.: Evolutionary games and spatial chaos. Nature(London) 359, 826–829 (1992)CrossRefGoogle Scholar
  27. 27.
    Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)CrossRefGoogle Scholar
  28. 28.
    Posch, M.: Evolution of equilibria in the long run: A general theory and applications. Journal of Economic Theory 65, 383–415 (1995)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Posner, E.: Law and Social Norms. Harvard University Press, Cambridge (2000)Google Scholar
  30. 30.
    Powers, R., Shoham, Y.: New criteria and a new algorithm for learning in multi-agent systems. In: Proceedings of NIPS (2005)Google Scholar
  31. 31.
    Schelling, T.C.: The Strategy of Conflict. Havard University Press, Cambridge (1960)Google Scholar
  32. 32.
    Schweitzer, F., Zimmermann, J., Muhlenbein, H.: Coordination of decisions in a spatial agent modela. Physica A 303(1-2), 189–216 (2001)CrossRefGoogle Scholar
  33. 33.
    Sen, S., Airiau, S.: Emergence of norms through social learning. In: Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI’07), January 2007, pp. 1507–1512 (2007)Google Scholar
  34. 34.
    Shoham, Y., Tennenholtz, M.: On the emergence of social conventions: modeling, analysis, and simulations. Artificial Intelligence 94, 139–166 (1997)zbMATHCrossRefGoogle Scholar
  35. 35.
    Tumer, K., Wolpert, D.H.: Collective intelligence and Braess’ paradox. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 104–109. AAAI Press, Menlo Park (2000)Google Scholar
  36. 36.
    Watkins, C.J.C.H., Dayan, P.D.: Q-learning. Machine Learning 3, 279–292 (1992)Google Scholar
  37. 37.
    Young, H.P.: Social norms. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics, 2nd edn. Macmillan, London (2008)Google Scholar
  38. 38.
    Young, P.H.: The evolution of conventions. Econometrica 61, 57–84 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Young, P.H.: The economics of convention. The Jounal of Economic Perspectives 10(2), 105–122 (Spring 1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Onkur Sen
    • 1
  • Sandip Sen
    • 2
  1. 1.Oklahoma School of Science and Mathematics 
  2. 2.Department of Computer ScienceUniversity of Tulsa 

Personalised recommendations