Skip to main content

Reliability and Availability of Repairable Systems

  • Chapter
  • First Online:
Reliability Engineering
  • 3233 Accesses

Abstract

Reliability and availability analysis of repairable systems is generally performed using stochastic processes, including Markov, semi-Markov, and semi-regenerative processes. The mathematical foundation of these processes is in Appendix A7. Equations used to investigate Markov and semi-Markov models are summarized in Table 6.2. This chapter investigates systematically most of the reliability models encountered in practical applications. Reliability figures at system level have indices Si (e. g. MITFsi ), where S stands for system and i is the state entered at t = 0 (Table 6.2). After Section 6.1 (introduction, assumptions, conclusions), Section 6.2 investigates the one-item structure under general conditions. Sections 6.3 - 6.6 deal extensively with series, parallel, and series-parallel structures. To unify models and simplify calculations, it is assumed that the system has only one repair crew and no further failures occur at system down. Starting from constant failure and repair rates between successive states (Markov processes), generalization is performed step by step (beginning with the repair rates) up to the case in which the process involved is regenerative with a minimum number of regeneration states. Approximate expressions for large series - parallel structures are investigated in Section 6.7. Sections 6.8 considers systems with complex structure for which a reliability block diagram often does not exist. On the basis of practical examples, preventive maintenance, imperfect switching, incomplete coverage, elements with more than two states, phased-mission systems, common cause failures, and general reconfigurable fault tolerant systems with reward & frequency / duration aspects are investigated. Basic considerations on network reliability are given in Section 6.8.8 and a general procedure for complex structures is in Section 6.8.9. Sections 6.9 introduces alternative investigation methods (dynamic FTA, BDD, event trees, Petri nets, computer-aided analysis), and gives a Monte Carlo approach useful for rare events. Asymptotic & steady-state is used as a synonym for stationary (pp. 490 & 501). Results are summarized in tables. Selected examples illustrate the practical aspects.

*Ingénieur et penseur, Ph.D., Professor Emeritus of Reliability Eng. at the Swiss Federal Institute of Technology (ETH), Zurich

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

  1. Somani A.K. et al., “Computational-efficient phased-mission reliability analysis for systems with variable configurations”, IEEE Trans. Rel., 41(1992)4, pp. 504–11.

    Article  MathSciNet  Google Scholar 

  2. Zhou L., Availability Analysis and Optimization in Optical Transport Networks, 2007, Ph.D. Thesis 17191, ETH Zurich.

    Google Scholar 

  3. Ascher H., “Evaluation of repairable system rel. using the bad-as-old concept”, IEEE Trans. Rel., 17(1968)2, pp. 103–10;- et al., Repairable Systems Reliability, 1984, Dekker, NY (new Ed. in prep.).

    Article  Google Scholar 

  4. Tenenbaum A.S., Computer Networks, 3d Ed., 1996, Prentice-Hall, Englewood Cliffs NJ.

    Google Scholar 

  5. Tu H.Y. et al., “Families of optimal fault-tolerant multiple-bus networks”, IEEE Trans. Par. & Distrib. Sys., 12(2001)1, pp. 60–73.

    Article  Google Scholar 

  6. Lindemann C., et al., “Numerical methods for reliability evaluation of Markov closed fault-tolerant systems”, IEEE Trans. Rel., 44(1995)4, pp. 694–704.

    Article  Google Scholar 

  7. Dugan J.B., “Automated analysis of phased-mission reliability”, IEEE Trans. Rel., 40(1991), pp. 45–52.

    Article  MATH  Google Scholar 

  8. Choi, H. et al., “Markov regenerative stochastic Petri nets”, Performance Ev., 20(1994), pp. 337–57.

    Article  Google Scholar 

  9. Aiello W. et al., “Augmented ring networks”, IEEE Trans. Par. & Distrib. Sys., 12(2001)6, pp. 598–609.

    Article  Google Scholar 

  10. Malhotra M. et al., “Power-hierarchy of dependability-model types”, IEEE Trans. Rel., 43(1994)3, pp. 493–502; “Dependability mod. using Petri-Nets”, IEEE Trans. Rel., 44(1995)3, pp. 428–40 (1996, p.272).

    Article  MathSciNet  Google Scholar 

  11. RAC, PRISM System Reliability Assessment Software, 2001, RAC Rome, NY (s. also [1.22]).

    Google Scholar 

  12. Manzi E, et al., “Fishman’s sampling plan for computing network reliability”, IEEE Trans. Rel., 50(2001)1, pp. 41–46.

    Article  Google Scholar 

  13. Smotherman M. et al., “A nonhomogeneous Markov model for phased-mission reliability analysis”, IEEE Trans. Rel., 38(1989)5, pp. 585–90.

    Article  MATH  Google Scholar 

  14. Frank H. et al., Communication, Transmission, & Transp. Networks, 1971, Addison-Wesley, Reading MA.

    Google Scholar 

  15. Yeh W.C., “A simple heuristic algorithm for generating all minimal paths”, IEEE Trans. Rel., 56(2007)3, pp. 488–94.

    Article  Google Scholar 

  16. Barlow R.E. et al., Mathematical Theory of Reliability, 1965, Wiley, NY; Statistical Theory of Reliability and Life Testing, 1975, Holt Rinehart, NY.

    MATH  Google Scholar 

  17. RAC (now RIAC), NONOP-1: Nonoperating Rel. Data, 1992; NPRD-95: Nonelectronic Parts Rel. Data, 1995 (NPRD-08 to appear); TR-89–177: VHSIC/ VHSIC Rel. Modeling; TR-90–72: Rel. Analysis Assessment of Adv. Technologies.

    Google Scholar 

  18. MIL-HDBK-217: Reliability Prediction of Electronic Equipment, Revision G, Draft 8/5/2009.

    Google Scholar 

  19. Solovyev A.D., “The problem of optimal servicing”, Eng. Cybernetics, 8(1970)5, pp. 859–68; “Asymptotic distribution of the moment of first crossing of a high level by a birth and death proc.”, Proc. sixth Berkeley Symp. Math. Stat. Prob., 3(1970), pp. 71–86; “Asymptotic behavior of the time of first occurrence of a rare event in a reg. process”, Eng. Cybernetics, 9(1971)6, pp. 1038–48.

    Google Scholar 

  20. Lee K.V., “Stochastic model for random request availability”, IEEE Trans. Rel., 49(2000)1, pp. 80–84.

    Article  Google Scholar 

  21. Bobbio A., “Struttura delle reti in un mondo interconnesso”, Mondo Dig., 20(2006)Dic, pp. 3–18; -et al., “Binary decision diagrams in network reliability analysis” Proc. DCDS07, 2007, pp. 57–62; “A tool for network reliability analysis”, in Int. Conf. on Computer Safety, Reliability, and Security, SAFECOMP 2007, Ed. Saglietti F. et al., 2007, Springer, Berlin, pp. 417–22; “Reliability and quality of services in weighted probabilistic networks using ADD”, Proc. Ann. Rel. & Maint. Symp., 2009, pp. 19–24.

    Google Scholar 

  22. Ou Y. et al., “Multi-phase reliability analysis for dynamic and static phases”, Proc. Ann. Rel. & Maint. Symp., 2002, pp. 404–10; “Modular solution of dynamic multi-phase systems”, IEEE Trans. Rel., 53(2004)4, pp. 499–508.

    Article  Google Scholar 

  23. Yin L. et al., “Uncertainty analysis in rel. modeling”, Proc. Ann. Rel. & Maint. Symp., 2001, pp. 229–34; “Application of semi-Markov processes and CTMC to evaluation of UPS system availability”, Proc. Ann. Rel. & Maint. Symp., 2002, pp. 584–91.

    Google Scholar 

  24. Page L.B. et al., “Reliability polynomials and link importance in networks”, IEEE Trans. Rel., 43(1994)1, pp. 51–58; see also: Traldi L., “Commentary on”, IEEE Trans. Rel., 49(2000)3, p. 322.

    Article  Google Scholar 

  25. Birolini A., “Comments on Renewal theoretic aspects of two-unit redundant systems”, IEEE Trans. Rel., 21(1972)2, pp. 122–23; “Generalization of the expressions for rel. and availability of rep. items”, Proc. 2. Int. Conf. on Struct. Mech. in Reactor Techn., Berlin: 1973, Vol. VI, pp. 1–16; “Some appl. of regenerative stochastic processes to reliability theory - part two: Reliability and availability of 2-item redundant systems”, IEEE Trans. Rel., 24(1975)5, pp. 336–40; On the Use of Stochastic Processes in Modeling Reliability Problems (Habil. Thesis ETH), 1985, Springer, Berlin (Lect. Notes Ec. & Math. Syst. Nr. 252); Qualität & Zuverlässigkeit tech.. Systeme, 1985, 1988, 1991, 1997, Springer, Berlin.

    Article  Google Scholar 

  26. Kovalenko I.N et al., Models of Random Processes, 1996, CRC Press, NY.

    MATH  Google Scholar 

  27. Feller W., An Introduction to Probability Theory and its Applications, Vol. I 2nd Ed. 1957, Vol. II 1966, Wiley, NY.

    MATH  Google Scholar 

  28. Albert R. et al., “Statistical mech. of complex networks”, Rev. Modern Physics, 74(2002)1, pp. 47–97.

    Article  Google Scholar 

  29. Bobbio A., “System modeling with Petri nets” in Colombo G. et al. (eds.), System Rel Assessment, 1990, ECSC, EEC, EAEC, Brussels; “Stoch. reward models for performance & dependab. analysis”, J. of Commun., 43(1992)1, pp. 27–35.

    Google Scholar 

  30. Pullum L.L. et al., “Fault tree models for the analysis of complex computer-based systems”, Proc. Ann. Rel. & Maint. Symp., 1996, pp. 200–07.

    Google Scholar 

  31. Shooman M., “Simplification of Markov models by state merging”, Proc. Ann. Rel. & Maint. Symp., 1987, pp. 159–64.

    Google Scholar 

  32. Ushakov I.A. et al., Handbook of Reliability Engineering, 1994, Wiley, NY.

    Book  MATH  Google Scholar 

  33. Kanoun K. et al., “Fault-tolerant system dependability: Explicit modeling of hardware and software component-interactions”, IEEE Trans. Rel., 49(2000)4, pp. 363–75.

    Article  Google Scholar 

  34. Lee S.M. et al., “Sequential capacity determination of subnetworks in network performance analysis”, IEEE Trans. Rel., 53(2004)4, pp. 481–86.

    Article  Google Scholar 

  35. Birolini A., “Some applications of regenerative stochastic processes to reliability theory - Part One & Two”, IEEE Trans. Rel., 23(1974)3, pp. 186–94 & 24(1975)5, pp. 336–40; Semi-Markoff und verwandte Prozesse: Erzeugung und Anwendungen auf Probleme der Zuverlässigkeits- und Übertragungstheorie, Ph.D. Thesis 5375, ETH Zurich, 1974, also in AGEN-Mitt., 18(1975), pp. 3–52 and part in “Hardware simulation of semi-Markov & related proc.”, Math. & Comp. in Simul., 19(1977), pp. 75–97 & 183–91; On the Use of Stochastic Processes in Modeling Rel. Problems, 1985, Springer, Berlin (Lect. Notes Ec. & Math. Syst. 252); Qualität und Zuverlässigkeit technischer Systeme, 1985, 1988, 1991, 1997, Springer, Berlin.

    Google Scholar 

  36. IEC 61709: Electronic Components Reliability - Reference Condition for Failure Rates and Stress Models for Conversion, 1996 (new edition in preparation).

    Google Scholar 

  37. Kuo S.Y. et al., “Efficient and exact reliability evaluation for networks with imperfect vertices”, IEEE Trans. Rel., 56(2007)2, pp. 288–300.

    Article  Google Scholar 

  38. Turconi G. et al., “A design tool for fault tolerant systems”, Proc. Ann. Rel. & Maint. Symp., 2000, pp. 317–26.

    Google Scholar 

  39. Shooman M.L., Reliability of Computer Systems and Networks, 2002, Wiley, NY.

    Book  Google Scholar 

  40. Ren Y. et al., “Design reliable systems using static & dynamic fault trees”, IEEE Trans. Rel., 47(1998)3, pp. 234–44.

    Article  Google Scholar 

  41. Bernet R., “CARP - A program to calculate the predicted reliability”, 6th Int. Conf. on Rel. & Maint., Strasbourg 1988, pp. 306–10; Modellierung reparierbarer Systeme durch Markoff- und Semiregenerative Prozesse, 1992, Ph.D. Thesis 9682, ETH Zurich; Birolini A. et al., CARAP ETH Technical Spec., 1995, Report S10, ETH Zürich, Rel. Lab.; Kovalenko I. and Kuznetov N., Basis of the RS-Program/Guidance to the RS-Program, 1997, Rep. S13/S14, ETH Zurich, Rel. Lab.

    Google Scholar 

  42. Pagès M.C., System Reliability Evaluation and Prediction in Engineering, 1986, Springer, Berlin.

    Google Scholar 

  43. Endrenyi J., “Three state models in power system reliability evaluations”, IEEE Trans. Power Syst., 90(1971), pp. 1909–16; Reliability Modeling in Power Systems, 1978, Wiley, NY.

    Article  Google Scholar 

  44. Pan Y., “Fault tolerance in the block-shift network”, IEEE Trans. Rel., 50(2001)1, pp. 85–91.

    Article  Google Scholar 

  45. Obal D.W. et al., “Detecting and exploiting symmetry in discrete-state Markov models”, IEEE Trans. Rel., 56(2007)4, pp. 643–54.

    Article  Google Scholar 

  46. Kullstam A., “Availability, MTBF and MTTR for repairable M-out-of-N Systems”, IEEE Trans. Rel., 30(1981)4, pp. 393–94.

    Article  MATH  Google Scholar 

  47. Schneeweiss W., Petri Nets for Rel. Modeling, 1999, LiLoLe, Hagen; “Tutorial: Petri nets as a graphical description medium for many rel. scenarios”, IEEE Trans. Rel., 50(2001)2, pp. 159–64; Petri Net Picture Book, 2004, LiLoLe, Hagen; The Modeling World of Rel. & Safety Eng., 2005, LiLoLe, Hagen; Renewal Processes for Reliability Modeling, 2009, LiLoLe, Hagen.

    Article  MathSciNet  Google Scholar 

  48. Arunkumar S. et al., “Enumeration of all minimal cut-sets for a node pair in a graph”, IEEE Trans. Rel., 28(1987)1, pp. 51–55.

    Article  MathSciNet  Google Scholar 

  49. Jane C.C. et al., “A practical algorithm for computing multi-state two-terminal reliability”, IEEE Trans. Rel., 57(2008)2, pp. 295–302.

    Article  Google Scholar 

  50. Telcordia, Automated Rel. Prediction Procedure, Telcordia Technology, Red Bank NJ.: see also [1.22, 2.6, 2.18, 2.74, 2.76, 4.24, 4.32, 6.18, 6.43]

    Google Scholar 

  51. IEC 1070 (1991): Compl. Tests for Availability; 60068-1 to -5 (1971-2009): Environm. Tests; 60300: Dependability Manag, -1 (2003): System, -2 (2004): Guidelines, -3-1 to -5, -9 to -12*, -14 to -16 (1995-2009) Appl. Guides; 60319 (1999): Spec. of Rel. Data for El. Comp.; 60410 (1973) Sampling plans by Attrib.; 60447 (2004): Man-Machine-Interface; 60605: Eq. Rel. Testing, -2 (1994) Test Cycles, -4 (2001) λ Estim., -6 (2007) Const. λ 60706: Maintainability, -2(2006) Req., -3(2006) Data Coll., -5(2007) Testability; 60721-1 to -4 (1982-2008): Env. Cond.; 60749-1 to -39 (2002-2009): Semicond. Mec. & Clim. Tests; 60812 (2006): FMEA; 61000 -1 to -6 (1990-2009): EMC; 61014 & 61164 (2003 & 2004): Rel. Growth; 61025 (2006): FTA; 61070 (1991): Availability Val.; 61078* (2006): Rel. Block Diagr.; 61123 (1991): Success Ratio (Supers. 60605-5); 61124* (2006): Const. Fail. Rate (Supers. 60605-7); 61160 (2006): Design Reviews; 61163-1 &-2 (1998-2006): Screening; 61164 see 61014; 61165* (2006): Markov. Tech.; 61508-SER* (-0 to -7, 2005): Functional Safety; 61649 (2008): Weibull Analysis; 61650 (1997): Comparison of twoλ; 61703 (2001): Math. expressions; 61709* (1996): Failure Rates Models; 61710* (2000): Goodness-of-fit tests; 61882 (2001): Hazard Studies; 61907 (2009): Comm. Networks Dep.; TR 62010* (2005): Maint. Manag.; 62137* (2004-7): Tests for SMD Boards; 62198 (2001): Project Risk Manag.; 62278 (2009): Railways RAMS; 62308* (2006): Rel. Assessment; TR 62380 (2004): Rel. Data HDBK; 62402 (2007): Obsolescence Manag.; 62429 (2007): Screening; 62502 (draft): Event Tree An.; 62506 (draft): Accel. Tests; 62508 (draft): Human Factors; 62550 (draft): Spare Parts; 62551 (draft): Petri Nets; 62628 (draft): Software Aspects.

    Google Scholar 

  52. Moskowitz F., “Analysis of redundancy networks”, AIEE Trans. Comm. El..,, 35(1958), pp. 627–32.

    Google Scholar 

  53. IEC TR 62380: Reliability Data Handbook, 2004 (formerly RDF 2000/UTE C80–810: Recueil de Données de Fiabilité, 2000, CNET Lannion).

    Google Scholar 

  54. Dylis D.D. et al., “A comprehensive reliability assessment tool for electronic systems”, Proc. Ann. Rel. & Maint. Symp., 2001, pp. 308–13.

    Google Scholar 

  55. Dubi A., Monte Carlo Applications in System Engineering, 2000, Wiley, NY.

    Google Scholar 

  56. RIAC-HDBK-217Plus: Handbook 217Plus Rel. Prediction Models, 2008, RIAC, Utica, NY

    Google Scholar 

  57. Guenzi G. et al., “Stochastic processes and reliability: Applications to repairable systems”, Atti Giornata AICE 1999, Univ. Bocconi Milano, pp. 69–119; Guenzi G., private commun., 2002.

    Google Scholar 

  58. Carrasco J.A. et al., “An algorithm to find minimal cuts of coherent fault-trees with event-classes using a decision tree”, IEEE Trans. Rel., 48(1999)1, pp. 31–41.

    Article  Google Scholar 

  59. Gymayr J., et al., “Fault-tree analysis: a knowledge-engineering approach”, IEEE Trans. Rel., 44(1995)1, pp. 37–45.

    Article  Google Scholar 

  60. Zheng Z. et al., “A study on a single-unit Markov repairable system with repair time omission”, IEEE Trans. Rel., 55(2006)2, pp. 182–88.

    Article  Google Scholar 

  61. Petri C.A., Kommunikation mit Automaten, Ph.D. thesis University of Bonn, 1962 (also as Communication with Automata, RADC TR-65–377, 1966).

    Google Scholar 

  62. Item, Item Toolkit for RAMS, 2001, Item Software, Fareham, Hampshire UK.

    Google Scholar 

  63. Kim K.et al., “Phased-mission system rel. under Markov env.”, IEEE Trans. Rel., 43(1994)2, pp. 301–09.

    Article  Google Scholar 

  64. Takács L., “On a probability theorem arising in the theory of counters”, Proc. Camb. Phil. Soc. 52(1956), pp. 488–98; “On certain sojourn time problems in the theory of stoch. proc.”, Acta Math. (Hungar), 8(1957), pp. 169–91; Stochastic Processes, Problems and Solutions, 4th Ed. 1968, Methuen, London.

    Google Scholar 

  65. Dugan J.B. et al., “Dynamic fault tree models for fault tolerant comp. syst.”, IEEE Trans. Rel., 41(1992), pp. 363–77 (see also Rel. Eng. & Syst. Safety, 39(1993), pp. 291–307); “Developing a lowcost high-quality software tool for dyn. fault-tree anal.”, IEEE Trans. Rel., 49(2000), pp. 49–59.

    Article  Google Scholar 

  66. Gnedenko B.V. et al., “Mathematical Methods of Reliability Theory, 1969, Academic, NY (1968, Akademie, Berlin); Probabilistic Reliability Engineering, 1995, Wiley, NY.

    MATH  Google Scholar 

  67. Metropolis N. et al., “The Monte Carlo method”, J. Amer. Stat. Assoc., 44(1949), pp. 335–41.

    Article  MATH  MathSciNet  Google Scholar 

  68. Sahner R. et al., “Rel. modeling using SHARPE”, IEEE Trans. Rel. 36(1987), pp. 186–93.

    Article  Google Scholar 

  69. Shier D.R., Network Reliability and Algebraic Structures, 1991, Oxford Univ. Press, NY.

    MATH  Google Scholar 

  70. FIDES Guide 2009: Rel. Methodology for Electronic Systems, Paris (www.fides-reliability.org).

  71. Kovalenko I. et al., “Uniform exponential bounds for the availability of a repairable system”, in Exploring Stochastic laws, Homage to V.S. Korolyuk, 1995, VSP, Utrecht, pp. 233–42.

    Google Scholar 

  72. RDF 96: Recueil Données de Fiabilité des Comp. Electroniques, 1996, Thomson-CSF, Grenoble.

    Google Scholar 

  73. Hall J.D. et al., “Frequency and duration methods for power system reliability calculation”, IEEE Trans. Power Syst., 87(1968)9, pp. 1787–96, see also 88(1969)4, pp. 107–20.

    Article  Google Scholar 

  74. Bryant R.E., “A graph based algorithm for Boolean function manip.”, IEEE Trans. Comp., 35(1986)8, pp. 677–91; “Symbolic Boolean manip. with ordered BDD”, ACM Comp. Surv., 24(1992), pp. 293–318..

    Article  MATH  Google Scholar 

  75. Billinton R. et al., Reliability Evaluation of Power Systems, 1996, Plenum Press, NY; Reliability Assessment of Electric Power Systems using Monte Carlo Methods, 1994, Plenum Press, NY.

    Google Scholar 

  76. SR-332: Rel. Prediction Procedure for El. Equip., Issue 3 planned, Telcordia Technol., Red Bank NJ.: see also [1.22, 3.1, 3.10, 3.15, 358, 3.66]; for Bellcore see

    Google Scholar 

  77. IRPH 2003: Italtel Reliability Prediction HDBK, 2003, Italtel, Milano.

    Google Scholar 

  78. Lin Y.-K., “Reliability of a stochastic-flow network with unreliable branches & nodes under budget constraints”, IEEE Trans. Rel., 53(2004)3, pp. 381–87.

    Article  Google Scholar 

  79. Finkelstein M., “Multiple availability on stoch. demand”, IEEE Trans. Rel., 48(1999)1, pp. 19–24;- et al., “Laplace-tr. & fast-repair approx. for mult. avail.”, IEEE Trans. Rel., 51(2002)2, pp. 168–76.

    Article  Google Scholar 

  80. Satisatian S. et al., “An algorithm for lower reliability bounds of multistate two-terminal networks”, IEEE Trans. Rel., 55(2006)2, pp. 199–206.

    Article  Google Scholar 

  81. Relex, Visual Reliability Software, 2001, Relex Software, Greensburg PA.

    Google Scholar 

  82. Colbourn C.J., The Combinatorics of Network Reliability, 1987, Oxford Univ. Press; -et al., Network Reliability a Computational Environment, 1995, CRC Press, Boca Raton FL.

    Google Scholar 

  83. Jaeger H., “RAMTOOL”, Proc. ETH/IEEE Int. Symp. on Rel. Eng. 2’000, ETH Zurich, Rel. Lab., Oct. 17, 1996; Zuverlässigheit und Materialerhaltbarkeit, Bundesakad. W.W., Mannheim, 1998.

    Google Scholar 

  84. Bowles J.B. et al., “Comparison of commercial reliability-prediction programs”, Proc. Ann. Rel. & Maint. Symp., 1990, pp. 450–55.

    Google Scholar 

  85. NSWC-07: HDBK of Reliability Prediction Procedures for Mechanical Equipment, 2007, Naval Surface Warfare Center-Carderock Division, Bethesda MA.

    Google Scholar 

  86. Dersin P. et al., “Mass transit system service quality: Trade-off analysis on reliability, maintainability and logistics”, Proc. Ann. Rel. & Maint. Symp., 1995, pp. 515–28.

    Google Scholar 

  87. Esary J.D. et al., “Rel. an. of phased missions”, Proc. Conf. Rel. & Fault Tree An., 1975, pp. 213–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Birolini* .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birolini*, A. (2010). Reliability and Availability of Repairable Systems. In: Reliability Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14952-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14952-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14951-1

  • Online ISBN: 978-3-642-14952-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics