Transition from Anticipatory to Lag Synchronization via Complete Synchronization

  • M. LakshmananEmail author
  • D.V. Senthilkumar
Part of the Springer Series in Synergetics book series (SSSYN)


In this chapter we will consider chaos synchronization of two single scalar piecewise-linear time-delay systems studied in Chaps. 3 and 7 with unidirectional coupling between them and having two different time-delays: one in the coupling term and the other in the individual systems, namely feedback delay. We deduce [1] the corresponding stability condition for synchronization following Krasovskii-Lyapunov theory as in the previous chapter for complete synchronization, and demonstrate that there exist transitions between three different kinds of direct, and their inverse synchronizations, namely anticipatory, complete and lag synchronizations, as a function of the time-delay parameter in the coupling.


Drive System Feedback Delay Complete Synchronization Feedback Delay Time Coupling Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D.V. Senthilkumar, M. Lakshmanan, Phys. Rev. E 71, 016211 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    M. Zhan, G.W. Wei, C.H. Lai, Phys. Rev. E 65, 036202 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    K. Pyragas, Phys. Rev. E 58, 3067 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    N.N. Krasovskii, Stability of Motion (Stanford University Press, Stanford, CA, 1963)zbMATHGoogle Scholar
  5. 5.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    N. Platt, S.M. Hammel, J.F. Heagy, Phys. Rev. Lett. 72, 3498 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    J.F. Heagy, N. Platt, S.M. Hammel, Phys. Rev. E 49, 1140 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Rangan, D. Cai, Phys. Rev. Lett. 96, 178101 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    X. Chen, J.E. Cohen, J. Theor. Biol. 212, 223 (2001)CrossRefGoogle Scholar
  10. 10.
    S. Sinha, S. Sinha, Phys. Rev. E 71, 020902 (R) (2005)ADSGoogle Scholar
  11. 11.
    T.W. Carr, M.Y. Taylor, I.B. Schwartz, Physica D 213, 152 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. 12.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    S. Boccaletti, V. Latora, Y. Morenoy, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, C.S. Zhou, Phys. Rep. 469, 93 (2008)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    M.C. Mackey, L. Glass, Science 197, 287 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    M.C. Mackey, L. Glass, From Clocks to Chaos, The Rhythms of Life (Princeton University Press, Princeton, NJ, 1988)zbMATHGoogle Scholar
  17. 17.
    K. Ikeda, H. Daido, O. Akimoto, Phys. Rev. Lett. 45, 709 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    K. Ikeda, K. Matsumoto, Physica D 29, 223 (1987)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    C. Masoller, D.H. Zanette, Physica A 300, 359 (2001)ADSzbMATHCrossRefGoogle Scholar
  20. 20.
    M. Le Berre, E. Ressayre, A. Tallet, H.M. Gibbs, D.L. Kaplan, M.H. Rose, Phys. Rev. A 35, 3020 (1987)Google Scholar
  21. 21.
    D.V. Senthilkumar, J. Kurths, M. Lakshmanan, Chaos 19, 023107 (2009)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre for Nonlinear Dynamics, Bharathidasan UniversityTiruchirapalliIndia
  2. 2.Transdisciplinary Concepts and Methods, Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations