A Few Other Interesting Chaotic Delay Differential Equations

  • M. Lakshmanan
  • D.V. Senthilkumar
Part of the Springer Series in Synergetics book series (SSSYN)


One of the well known properties of DDEs is that their effective dimensions increase with the delay time τ[1, 2], see Sect. 1.2.2. This allows one to select different values (sufficiently large) for the delay time τ to generate high-dimensional chaotic signals. Hence, in recent times DDEs have received increased attention in the nonlinear dynamics literature due to the possibility of generating more complex and high-dimensional chaotic attractors and also because of the feasibility of their experimental realization. Therefore, several chaotic time-delay systems and their variants have been proposed during the past few years for generating and enhancing complexity of chaotic behavior in various technological and engineering applications. In this chapter, we will briefly review the dynamical properties of some of the most important first order scalar nonlinear time-delay systems, that have been widely used in the literature, exhibiting chaotic/hyperchaotic behaviors. In addition, we will also present some of the interesting coupled (higher order) delay differential equations in different areas of science and technology.


Chaotic Dynamic Chaotic Attractor Delay Differential Equation Cellular Neural Network Chaos Synchronization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.D. Farmer, Physica D 4, 366 (1982)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    K. Ikeda, M. Matsumoto, J. Stat. Phys. 44, 955 (1986)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    M.C. Mackey, L. Glass, Science 197, 287 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    M.C. Mackey, L. Glass, From Clocks to Chaos, The Rhythms of Life (Princeton University Press, Princeton, NJ, 1988)zbMATHGoogle Scholar
  5. 5.
    W.-H. Kye, M. Choi, M.-W. Kim, S.-Y. Lee, S. Rim, C.-M. Kim, Y.-J. Park, Phys. Lett. A 322, 338 (2004)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    M.J. Bunner, M. Popp, Th. Meyer, A. Kittel, J. Parisi, Phys. Rev. E 54, 3082(R) (1996)ADSCrossRefGoogle Scholar
  7. 7.
    C. Zhou, C.H. Lai, Phys. Rev. E 60, 320 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    V.I. Ponomarenko, M.D. Prokhorov, Phys. Rev. E 66, 026215 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    M.D. Prokhorov, V.I. Ponomarenko, Phys. Rev. E 72, 016210 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    W.-H. Kye, M. Choi, S. Rim, M.S. Kurdoglyan, C.-M. Kim, Y.-J. Park, Phys. Rev. E 69, 055202(R) (2004)ADSCrossRefGoogle Scholar
  11. 11.
    I.G. Szendro, J.M. Lopez, Phys. Rev. E 71, 055203 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    K. Pyragas, Phys. Rev. E 58, 3067 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    M. Zhan, X. Wang, X. Gong, G.W. Wei, C.H. Lai, Phys. Rev. E 68, 036208 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    M.-Y. Kim, C. Sramek, A. Uchida, R. Roy, Phys. Rev. E 74, 016211 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    A. Kittle, J. Parisi, K. Pyragas, Physica D 112, 459 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    S. Sano, A. Uchida, S. Yoshimori, R. Roy, Phys. Rev. E 75, 016207 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Namajunas, K. Pyragas, A. Tamasevicius, Phys. Lett. A 201, 42 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    R. Bellman, K.L. Cooke, Differential-Difference Equations (Academic Press, New York, 1963)zbMATHGoogle Scholar
  19. 19.
    N. McDonald, Biological Delay Systems: Linear Stability Theory (Cambridge University Press, Cambridge, 1989)Google Scholar
  20. 20.
    J. Kaplan, J. Yorke, in Functional Differential Equations and Approximation of Fixed Points, ed. by H.O. Peitgen, H.O. Walther. Lecture Notes in Mathematics, vol 730 (Springer, Berlin, 1979)Google Scholar
  21. 21.
    J. Losson, M.C. Mackey, A. Longtin, Chaos 3, 167 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    W. Horbelt, J. Timmer, H.U. Voss, Phys. Lett. A 299, 513 (2002)ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    A.S. Dmitriyev, Yu.N. Orlov, S.O. Starkov, Radiotekh. Elektron 34, 1980 (1989)ADSGoogle Scholar
  24. 24.
    A. Tamasevicius, G. Mykolaitis, S. Bumeliene, Electron. Lett. 42, 13 (2006)CrossRefGoogle Scholar
  25. 25.
    A. Tamasevicius, T. Pyragiene, M. Meskauskas, Int. J. Bifurcat. Chaos 17, 3455 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    J.C. Sprott, Phys. Lett. A 366, 397 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 27.
    L. Wang, X. Yang, Electron. Lett. 42, 1439 (2006)CrossRefGoogle Scholar
  28. 28.
    M.E. Yalcin, S. Ozoguz, Chaos 17, 033112 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    K. Ikeda, H. Daido, O. Akimoto, Phys. Rev. Lett. 45, 709 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    K. Ikeda, K. Matsumoto, Physica D 29, 223 (1987)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    C. Masoller, D.H. Zanette, Physica A 300, 359 (2001)ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    M. Le Berre, E. Ressayre, A. Tallet, H.M. Gibbs, D.L. Kaplan, M.H. Rose, Phys. Rev. A 35, 3020 (1987)Google Scholar
  33. 33.
    H.U. Voss, Phys. Rev. E 61, 5115 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    E.M. Shahverdiev, S. Sivaprakasam, K.A. Shore, Phys. Rev. E 66, 017204 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    E.M. Shahverdiev, S. Sivaprakasam, K.A. Shore, Phys. Lett. A 292, 320 (2002)ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    E.M. Shahverdiev, K.A. Shore, Phys. Rev. E 71, 016201 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    L. Larger, J.P. Goedgebuer, V. Udaltsov, C. R. Physique 5, 669 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    H.U. Voss, Int. J. Bifurcat. Chaos 12, 1619 (2002)CrossRefGoogle Scholar
  39. 39.
    Y.C. Tian, F. Gao, Physica D 108, 113 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. 40.
    M.E. Yalcin, S. Ozoguz, J.A.K. Suykens, J. Vandewalle, Int. J. Bifurcat. Chaos 12, 23 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    R.D. Driver, Ordinary and Delay Differential Equations (Springer, New York, 1977)zbMATHCrossRefGoogle Scholar
  42. 42.
    I. Boutle, R.H.S. Taylor, R.A. Romer, Am. J. Phys. 75, 15 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  43. 43.
    E. Tziperman, M.A. Cane, S.E. Zebiak, J. Atmos. Sci. 52, 293 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    J. Fort, V. Mendez, Phys. Rev. Lett. 82, 867 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    J.K. Hale, Theory of Functional Differential Equations (Springer, New York, 1977)zbMATHCrossRefGoogle Scholar
  46. 46.
    D.V. Ramana Reddy, Ph. D. Thesis entitled Collective Dynamics of Delay Coupled Oscillators (Institute for Plasma Research, Gandhinagar, India, 2000)Google Scholar
  47. 47.
    I. Gyori, P. Ladas, Oscillation Theory of Delay Differential Equations: With Applications (Clarendon Press, Oxford, 1991)Google Scholar
  48. 48.
    R. Ross, The Prevention of Malaria (John Murray, London, 1911)Google Scholar
  49. 49.
    P.K. Asea, P.J. Zak, J. Econ. Dyn. Control 23, 1155 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    M. Kalecki, Econometrica 3, 327 (1935)CrossRefGoogle Scholar
  51. 51.
    Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic Press, Boston, MA, 1993)zbMATHGoogle Scholar
  52. 52.
    V. Volterra, Lecons sur la theorie mathematique de la lutte pour la vieynamics (Gauthiers-Villars, Paris, 1931)Google Scholar
  53. 53.
    N. MacDonald, Time Lags in Biological Models. Lectuer Notes in Biomathematics (Springer, Berlin, 1978)Google Scholar
  54. 54.
    R.M. May, Stability and Complexity in Model Ecosystems (Princeton University Press, Princeton, NJ, 1974)Google Scholar
  55. 55.
    K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics (Kluwer Academic Publishers, Dordrecht, 1992)zbMATHCrossRefGoogle Scholar
  56. 56.
    A.D. Drozdov, V.B. Kolmanovskii, Stability in Viscoelasiticity (North-Holland, Amsterdam, 1994)Google Scholar
  57. 57.
    J.M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics. Lectuer Notes in Biomathematics, vol. 20 (Springer, Berlin, 1977)zbMATHCrossRefGoogle Scholar
  58. 58.
    J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer, New York, 1993)zbMATHGoogle Scholar
  59. 59.
    K. Sriram, Ph. D. thesis on Modelling Nonlinear Dynamics of Chemical and Circadian Rhythms Using Delay Differential Equations (Department of Chemistry, IIT, Madras, India, 2004)Google Scholar
  60. 60.
    Alwyn Scott (ed.), Encyclopedia of Nonlinear Science (Routledge, New York, 2005)zbMATHGoogle Scholar
  61. 61.
    A.N. Sharkovsky, Y. Maisternko, P. Deregel, L.O. Chua, J. Circuits Syst. Comput. 3, 645 (1993)CrossRefGoogle Scholar
  62. 62.
    M. Biey, B.F. Gilli, I. Maio, IEEE Trans. Circuits Syst. I 44, 486 (1997)MathSciNetCrossRefGoogle Scholar
  63. 63.
    M. Gilli, G.M. Maggio, IEEE Trans. Circuits Syst. I 43, 827 (1996)CrossRefGoogle Scholar
  64. 64.
    Thangavel, K. Murali, D.V. Senthilkumar, M. Lakshmanan, Int. J. Bifurcat. Chaos (Submitted)Google Scholar
  65. 65.
    C. Masoller, Phys. Rev. Lett. 86, 2782 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    A. Locquet, C. Masoller, C.R. Mirasso, Phys. Rev. E 65, 056205 (2002)ADSCrossRefGoogle Scholar
  67. 67.
    E.M. Shahverdiev, S. Sivaprakasam, K.A. Shore, Phys. Rev. E 66, 037202 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    S. Sivaprakasam, E.M. Shahverdiev, K.A. Shore, Phys. Rev. Lett. 87, 154101 (2001)ADSCrossRefGoogle Scholar
  69. 69.
    S. Sivaprakasam, I. Pierce, P. Rees, P.S. Spencer, K.A. Shore, Phys. Rev. A 64, 013805 (2001)ADSCrossRefGoogle Scholar
  70. 70.
    S. Tang, J.M. Liu, Phys. Rev. Lett. 90, 194101 (2003)ADSCrossRefGoogle Scholar
  71. 71.
    I. Wedekind, U. Parlitz, Phys. Rev. E 66, 026218 (2002)ADSCrossRefGoogle Scholar
  72. 72.
    L.B. Shaw, I.B. Schwartz, E.A. Rogers, R. Roy, Chaos 16, 015111 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    A. Murakami, Phys. Rev. E 65, 056617 (2002)MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    E.M. Shahverdiev, S. Sivaprakasam, K.A. Shore, Phys. Rev. E 66, 017206 (2002)ADSCrossRefGoogle Scholar
  75. 75.
    J. Ohtsubo, IEEE J. Quantum Electron. 38, 1141 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    L. Wu, S. Zhu, Phys. Lett. A 315, 101 (2003)MathSciNetADSCrossRefGoogle Scholar
  77. 77.
    A.S. Landsman, I.B. Schwartz, Phys. Rev. E 75, 026201 (2007)ADSCrossRefGoogle Scholar
  78. 78.
    I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsaesser, E. Goebel, D. Lenstra, Phys. Rev. Lett. 76, 220 (1996)ADSCrossRefGoogle Scholar
  79. 79.
    R. Lang, K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980)ADSCrossRefGoogle Scholar
  80. 80.
    J. Sacher, D. Baums, P. Panknin, W. Elsaesser, E.O. Goebel, Phys. Rev. A 45, 1893 (1992)ADSCrossRefGoogle Scholar
  81. 81.
    C.-H. Lee, S.-Y. Shin, Appl. Phys. Lett. 62, 922 (1993)ADSCrossRefGoogle Scholar
  82. 82.
    S.I. Turovets, J. Dellunde, K.A. Shore, J. Opt. Soc. Am. B 14, 200 (1997)ADSCrossRefGoogle Scholar
  83. 83.
    J. Mork, B. Tromborg, J. Mark, IEEE J. Quantum Electron. 28, 93 (1992)ADSCrossRefGoogle Scholar
  84. 84.
    L. Larger, J.M. Dudley, Nature 465, 41 (2010)ADSCrossRefGoogle Scholar
  85. 85.
    D.W. Sukow, A. Gavrielides, T. McLachlan, G. Burner, J. Amonette, J. Miller, Phys. Rev. A 74, 023812 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    J. Meng, X. Wang, Chaos 17, 023113 (2007)MathSciNetADSCrossRefGoogle Scholar
  87. 87.
    H. Zhu, B. Cui, Chaos 17, 043122 (2007)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre for Nonlinear Dynamics, Bharathidasan UniversityTiruchirapalliIndia
  2. 2.Transdisciplinary Concepts and Methods, Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations