Advertisement

Transition from Phase to Generalized Synchronization

  • M. Lakshmanan
  • D.V. Senthilkumar
Chapter
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

Chaotic phase synchronization (CPS) has become the focus of recent research as it plays a crucial role in understanding the behavior of a large class of weakly interacting dynamical systems in diverse natural systems including circadian rhythm, cardio-respiratory systems, neural oscillators, population dynamics, etc [1–3]. The definition of CPS is a direct extension of the classical definition of synchronization of periodic oscillations and can be referred to as entrainment between the phases of interacting chaotic systems, while the amplitudes remain chaotic and, in general, non-correlated [4] (see also Appendix B).

Keywords

Lyapunov Exponent Coupling Strength Chaotic Attractor Lorenz System Large Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization – A Unified Approach to Nonlinear Science (Cambridge University Press, Cambridge, 2001)CrossRefGoogle Scholar
  2. 2.
    S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366, 1 (2002)MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    J. Kurths (ed.), Special issue on phase synchronization. Int. J. Bifurcat. Chaos 10, 2289 (2000)Google Scholar
  4. 4.
    G.V. Osipov, A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Phys. Rev. E 55, 2353 (1997)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    A.S. Pikovsky, G.V. Osipov, M.G. Rosenblum, M. Zaks, J. Kurths, Phys. Rev. Lett. 79, 47 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    A.S. Pikovsky, M.G. Rosenblum, G.V. Osipov, J. Kurths, Physica D 219, 104 (1997)MathSciNetGoogle Scholar
  7. 7.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76, 1804 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 4193 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    M. Zhan, G.W. Wei, C.H. Lai, Phys. Rev. E 65, 036202 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    U. Parlitz, L. Junge, W. Lauternorn, L. Kocarev, Phys. Rev. E 54, 2115 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    M. Zhan, Z. Zheng, G. Hu, X. Peng, Phys. Rev. E 62, 3552 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    E. Rosa Jr., C.M. Ticos, W.B. Pardo, J.A. Walkenstein, M. Monti, J. Kurths, Phys. Rev. E 68, 025202(R) (2003)ADSCrossRefGoogle Scholar
  13. 13.
    S. Guan, C.H. Lai, G.W. Wei, Phys. Rev. E 72, 016205 (2005)MathSciNetADSCrossRefGoogle Scholar
  14. 14.
    A. Pujol-Peré, O. Calvo, M.A. Matias, J. Kurths, Chaos 13, 319 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Baptista, T.P. Silva, J.C. Sartorelli, I.L. Caldas, E. Rosa Jr., Phys. Rev. E 67, 056212 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S.K. Dana, B. Blasius, J. Kurths, Chaos 16, 023111 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    K.V. Volodehenko, V.N. Ivanov, S.H. Gong, M. Choi, Y.J. Park, C.M. Kim, Phys. Rev. Lett. 26, 1406 (2001)Google Scholar
  18. 18.
    D.J. DeShazer, R. Breban, E. Ott, R. Roy, Phys. Rev. Lett. 87, 044101 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    D. Maza, A. Vallone, H. Macini, S. Boccaletti, Phys. Rev. Lett. 85, 5567 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.J. Freund, Phys. Rev. Lett. 81, 3291 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    R.C. Elson, A.I. Selvertson, R. Huerta, N.F. Rulkov, M.I. Rabinovich, H.D.I. Abarbanel, Phys. Rev. Lett. 81, 5692 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    D. Maraun, J. Kurths, Geophys. Res. Lett. 32, L15709 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    T. Heil, I. Fischer, W. Elsaber, B. Krauskopf, K. Green, A. Gavrielides, Phys. Rev. E 67, 066214 (2003)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    N. Kopell, G.B. Ermentrout, M.A. Whittington, R.D. Traub, PNAS 97, 1867 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    M. Kostur, P. Hanggi, P. Talkner, J.L. Mateos, Phys. Rev. E 72, 036210 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Mackey, L. Glass, Science 197, 287 (1977)ADSCrossRefGoogle Scholar
  27. 27.
    L.B. Shaw, I.B. Schwartz, E.A. Rogers, R. Roy, Chaos 16, 015111 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    D.V. Senthilkumar, M. Lakshmanan, J. Kurths, Phys. Rev. E 74, 035205(R) (2006)ADSCrossRefGoogle Scholar
  29. 29.
    M. Lakshmanan, R. Sahadevan (eds.), Proceedings of the 3rd National Conference on Nonlinear Systems and Dynamics (Allied Publishers, Chennai, 2006), p. 202Google Scholar
  30. 30.
    G.V. Osipov, B. Hu, C. Zhou, M.V. Ivanchenko, J. Kurths, Phys. Rev. Lett. 91, 024101 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Farmer, Ann. N.Y. Acad. Sci. 357, 453 (1980)ADSCrossRefGoogle Scholar
  32. 32.
    E.F. Stone, Phys. Lett. A 163, 367 (1992)MathSciNetADSCrossRefGoogle Scholar
  33. 33.
    D. Gabor, J. IEE Lond. 93, 429 (1946)Google Scholar
  34. 34.
    D.V. Senthilkumar, M. Lakshmanan, Int. J. Bifurcat. Chaos 15, 2985 (2005)MathSciNetCrossRefGoogle Scholar
  35. 35.
    D.V. Senthilkumar, M. Lakshmanan, Phys. Rev. E 71, 016211 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    D.V. Senthilkumar, M. Lakshmanan, J. Phys.: Conf. Ser. 23, 300 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    J.D. Farmer, Physica D 4, 366 (1982)MathSciNetADSMATHCrossRefGoogle Scholar
  38. 38.
    J. Kaplan, J. Yorke, in Functional Differential Equations and Approximation of Fixed Points, ed. by H.O. Peitgen, H.O. Walther. Lecture Notes in Mathematics, vol 730 (Springer, Berlin, 1979)Google Scholar
  39. 39.
    M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J.L. Hudson, Europhys. Lett. 71, 466 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Rep. 438, 237 (2007)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    H.D.I. Abarbanel, N.F. Rulkov, M.M. Sushchik, Phys. Rev. E 53, 4528 (1996)ADSCrossRefGoogle Scholar
  42. 42.
    H. Kantz, T. Schriber, Nonlinear Time Series Analysis (Cambridge University Press, New York, 1997)MATHGoogle Scholar
  43. 43.
    T. Pereira, M.S. Baptista, J. Kurths, Phys. Rev. E 75, 026216 (2007)MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    B. Hu, G.V. Osipov, H.Y. Yang, J. Kurths, Phys. Rev. E 67, 066216 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre for Nonlinear Dynamics, Bharathidasan UniversityTiruchirapalliIndia
  2. 2.Transdisciplinary Concepts and Methods, Potsdam Institute for Climate Impact ResearchPotsdamGermany

Personalised recommendations