Interaction Analysis for Adaptive User Interfaces

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6215)


Adaptive User Interfaces are able to facilitate the handling of computer systems through the automatic adaptation to users’ needs and preferences. For the realization of these systems, information about the individual user is needed. This user information can be extracted from user events by applying analytical methods without the active information input by the user. In this paper we introduce a reusable interaction analysis system based on probabilistic methods that predicts user interactions, recognizes user activities and detects user preferences on different levels of abstraction. The evaluation reveals that the prediction quality of the developed algorithm outperforms the quality of other established prediction methods.


Probabilistic Models Interaction Analysis User Modeling Adaptive User Interfaces Adaptive Visualization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, D., Zukerman, I., Nicholson, A.: Bayesian Models for Keyhole Plan Recognition in an Adventure Game. In: UMUAI 1998, vol. 8, pp. 5–47 (1998)Google Scholar
  2. 2.
    Álvarez-Corés, V., Zayaz-Pérez, B., Zárate-Silvia, V., Uresti, J.: Current Trends in Adaptive User Interfaces: Challenges and Applications. CERMA, 312–317 (2007)Google Scholar
  3. 3.
    Anderson, C.R., Domingos, P., Weld, D.S.: Relational Markov Models and their Application to Adaptive Web Navigation. In: ACM SIGKDD, KDD 2002, pp. 143–152 (2002)Google Scholar
  4. 4.
    Armentano, M.G., Amandi, A.A.: Recognition of User Intentions for Interface Agents with Variable Order Markov Models. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 173–184. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Danine, A., Lefebvre, B., Mayers, A.: TIDES - Using Bayesian Networks for Student Modeling. In: ICALT 2006, pp. 1002–1007. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  6. 6.
    Davison, B., Hirsh, H.: Predicting Sequences of User Actions. In: Predicting the Future: AI Approaches to Time Series Problems, pp. 5–12. AAAI Press, Menlo Park (1998)Google Scholar
  7. 7.
    Friedman, N.: The Bayesian Structural EM Algorithm. In: UAI 1998, pp. 129–138 (1998)Google Scholar
  8. 8.
    Getoor, L., Sahami, M.: Using Probabilistic Relational Models for Collaborative Filtering. In: Working Notes of the KDD Workshop on Web Usage Analysis and User Profiling (1999)Google Scholar
  9. 9.
    Guzdial, M.: Deriving Software Usage Patterns from Log Files. Georgia Institute of Technology (1993)Google Scholar
  10. 10.
    Hancock, M.S.: A Bayesian Network Model of a Collaborative Interactive Tabletop Display. University of British Columbia (2003)Google Scholar
  11. 11.
    Hilbert, D., Redmiles, D.: Extracting Usability Information from User Interface Events. ACM Comput. Surv. 32, 384–421 (2000)CrossRefGoogle Scholar
  12. 12.
    Horvitz, E., Breese, J., Heckerman, D., Hovel, D., Rommelse, K.: The Lumiere project: Bayesian User Modeling for inferring the Goals and Needs of Software Users. In: UAI 1998, pp. 256–265. Morgan Kaufmann, San Francisco (1998)Google Scholar
  13. 13.
    Jameson, A.: Adaptive Interfaces and Agents. In: Human-computer Interaction Handbook, pp. 305–330 (2003)Google Scholar
  14. 14.
    Künzer, A., Ohmann, F., Schmidt, L.: Antizipative Modellierung des Benutzerverhaltens mit Hilfe von Aktionsvorhersage-Algorithmen. MMI-Interaktiv (7), 61–83 (2004)Google Scholar
  15. 15.
    Noguez, J., Sucar, L.E.: A Probabilistic Relational Student Model for Virtual Laboratories. In: ENC 2005, pp. 2–9. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  16. 16.
    Papatheodorou, C.: Machine Learning in User Modeling. In: Paliouras, G., Karkaletsis, V., Spyropoulos, C.D. (eds.) ACAI 1999. LNCS (LNAI), vol. 2049, p. 286. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Guo, Q., Murphy, A., Deemer, S., Agichtein, E.: Modeling User Interactions for Automatic Library Search Evaluation: Preliminary Results. In: Joint Conference on Digital Libraries (2008)Google Scholar
  18. 18.
    Ross, E.: Intelligent User Interfaces Survey and Research Directions. University of Bristol (2000)Google Scholar
  19. 19.
    Stab, C.: Interaktionsanalyse für Adaptive Benutzerschnittstellen, Diploma Thesis, Technical University Darmstadt (2009)Google Scholar
  20. 20.
    Webb, G.I., Pazzani, M.J., Billsus, D.: Machine Learning for User Modeling. In: UMUAI 2001, pp. 19–29. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  21. 21.
    Zukerman, I., Albrecht, D.W.: Predictive Statistical Models for User Modeling. In: UMUAI 2001, pp. 5–18. Kluwer Academic Publisher, Dordrecht (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Fraunhofer Institute for Computer Graphics ResearchDarmstadtGermany

Personalised recommendations