Skip to main content

Hardware Emulation of Bacterial Quorum Sensing

  • Conference paper
Advanced Intelligent Computing Theories and Applications (ICIC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6215))

Included in the following conference series:

Abstract

A digital architecture for the emulation of dynamic bacterial quorum sensing is presented. The architecture is completely scalable, with all parameters stored in artificial bacteria. It shows that self-organizing principles can be emulated in an electronic circuit, to build a parallel system capable of processing information, similar to cell-based structure of biological creatures. A mathematical model of artificial bacteria and their behavior reflecting the self-organization of the system are presented. The bacteria implemented on an 8-bit microcontroller; and a framework with CPLDs to build the hardware platform where the bacterial population increases are shown. Finally, simulation results show the ability of the system to keep working after physical damage, just as its biological counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Prokopenko, M.: Advances in Applied Self-organizing Systems. Advanced Information and Knowledge Processing. Springer, Heidelberg (2008)

    Google Scholar 

  2. Polani, D.: Measuring self-organization via observers. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 667–675. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Pearson - Prentice Hall (2002)

    Google Scholar 

  4. Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, Princeton (2001)

    MATH  Google Scholar 

  5. Santini, C., Tyrrell, A.: Investigating the Properties of Self-Organization and Synchronization in Electronic Systems. IEEE Trans. on Pub. 8, 237–251 (2009)

    Google Scholar 

  6. Mange, D., Goeke, M., Madon, D., Stauer, A., Tempesti, G., Durand, S.: Embryonics: A New Family of Coarse-Grained Field Programmable Gate Array with Self-Repair and Self-Reproducing Properties. In: Sanchez, E., Tomassini, M. (eds.) Towards Evolvable Hardware 1995. LNCS, vol. 1062, pp. 197–220. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Freitas, R., Gilbreath, W.: Replicating Systems Concepts: Self-Replicating Lunar Factory and Demostration. In: Advanced Automation for Space Missions, 1980 NASA/ASEE Summer Study, Washington D.C (1980)

    Google Scholar 

  8. Greenwood, G., Tyrrell, A.: Introduction to Evolvable Hardware: A Practical Guide for Designing Self-Adaptive Systems. IEEE Press Series on C. I. Wiley, Chichester (2007)

    Google Scholar 

  9. Koza, J., Keane, M., Streeter, M.: The Importance of Reuse and Development in Evolvable Hardware. In: Conference NASA of Evolution Hardware, pp. 33–42 (2003)

    Google Scholar 

  10. Arbib, M.A.: The Handbook of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Wai-Yin, L.: Computer Immunology, Tesis Department of information Technology and Electrical Engineering, University of Queensland, NewYork (2002)

    Google Scholar 

  12. Sipper, M., Mange, D., Stauer, A.: Ontogenetic Hardware. BioSystems 44(3), 193–207 (1997)

    Article  Google Scholar 

  13. Ortega-Sanchez, C., Mange, D., Smith, S., Tyrrell, A.: Embryonics: A bio-inspired cellular architecture with fault-tolerant properties. In: Genetic Programming and Evolvable Machines, pp. 187–215 (2000)

    Google Scholar 

  14. Prodan, L., Tempesti, G., Mange, D., Stauffer, A.: Embryonics: Electronic stem cells. In: 8th International Conference on Artificial Life, pp. 101–105. MIT Press, Cambridge (2003)

    Google Scholar 

  15. Otero, A.M., Muñoz, A., Bernández, M.I., Fábregas, J.: Quorum Sensing el lenguaje de las bacterias, 1st edn., Acribia, Spain (2005)

    Google Scholar 

  16. Macias, N.J., Durbeck, L.J.K.: A Hardware Implementation of the Cell Matrix Self-configurable Architecture: the Cell Matrix MOD 88TM. In: Evolvable Hardware NASA/DoD 2005, pp. 103–106 (2005)

    Google Scholar 

  17. Tarakanov, A.O., Dasgupata, D.: A formal model of artificial immune system. Biosystems 55(3), 151–158 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martínez, F.H., Delgado, J.A. (2010). Hardware Emulation of Bacterial Quorum Sensing. In: Huang, DS., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds) Advanced Intelligent Computing Theories and Applications. ICIC 2010. Lecture Notes in Computer Science, vol 6215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14922-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14922-1_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14921-4

  • Online ISBN: 978-3-642-14922-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics