Parameter-Free Deterministic Global Search with Simplified Central Force Optimization

  • Richard A. Formato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6215)


This note describes a simplified parameter-free implementation of Central Force Optimization for use in deterministic multidimensional search and optimization. The user supplies only the objective function to be maximized, nothing more. The algorithm’s performance is tested against a widely used suite of twenty three benchmark functions and compared to other state-of-the-art algorithms. CFO performs very well.


Central Force Optimization CFO Deterministic Algorithm Multidimensional Search and Optimization Parameter-Free Optimization Gravitational Kinematics Metaphor Metaheuristic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Formato, R.A.: Central Force Optimization: A New Metaheuristic with Applications in Applied Electromagnetics. Prog. Electromagnetics Research 77, 425–449 (2007),
  2. 2.
    Formato, R.A.: Central Force Optimization: A New Computational Framework For Multidimensional Search and Optimization. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Studies in Computational Intelligence, vol. 129, pp. 221–238. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Formato, R.A.: Central Force Optimisation: A New Gradient-Like Metaheuristic for Multidimensional Search and Optimisation. Int. J. Bio-Inspired Computation 1, 217–238 (2009)Google Scholar
  4. 4.
    Formato, R.A.: Central Force Optimization: A New Deterministic Gradient-Like Optimization Metaheuristic. OPSEARCH 46, 25–51 (2009)Google Scholar
  5. 5.
    Qubati, G.M., Formato, R.A., Dib, N.I.: Antenna Benchmark Performance and Array Synthesis using Central Force Optimisation. IET (U.K.) Microwaves, Antennas & Propagation 5, 583–592 (2010)Google Scholar
  6. 6.
    Formato, R.A.: Improved CFO Algorithm for Antenna Optimization. Prog. Electromagnetics Research B, 405–425 (2010)Google Scholar
  7. 7.
    Formato, R.A.: Are Near Earth Objects the Key to Optimization Theory? arXiv:0912.1394 (2009),
  8. 8.
    Formato, R.A.: Central Force Optimization and NEOs – First Cousins?. Journal of Multiple-Valued Logic and Soft Computing (2010) (in press)Google Scholar
  9. 9.
    Formato, R.A.: NEOs – A Physicomimetic Framework for Central Force Optimization?. Applied Mathematics and Computation (review)Google Scholar
  10. 10.
    Formato, R.A.: Central Force Optimization with Variable Initial Probes and Adaptive Decision Space. Applied Mathematics and Computation (review)Google Scholar
  11. 11.
    Formato, R.A.: Pseudorandomness in Central Force Optimization, arXiv:1001.0317 (2010),
  12. 12.
    Formato, R.A.: Comparative Results: Group Search Optimizer and Central Force Optimization, arXiv:1002.2798 (2010),
  13. 13.
    Formato, R.A.: Central Force Optimization Applied to the PBM Suite of Antenna Benchmarks, arXiv:1003-0221 (2010),
  14. 14.
    Dorigo, M., Birattari, M., Stűtzle, T.: Ant Colony Optimization. IEEE Computational Intelligence Magazine, 28–39 (November 2006)Google Scholar
  15. 15.
    Campana, E.F., Fasano, G., Pinto, A.: Particle Swarm Optimization: dynamic system analysis for Parameter Selection in global Optimization frameworks,
  16. 16.
    Hsiao, Y., Chuang, C., Jiang, J., Chien, C.: A Novel Optimization Algorithm: Space Gravitational Optimization. In: Proc. of 2005 IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, pp. 2323–2328 (2005)Google Scholar
  17. 17.
    Chuang, C., Jiang, J.: Integrated Radiation Optimization: Inspired by the Gravitational Radiation in the Curvature Of Space-Time. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3157–3164 (2007)Google Scholar
  18. 18.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S., Farsangi, M.: Allocation of Static Var Compensator Using Gravitational Search Algorithm. In: Proc. First Joint Congress on Fuzzy and Intelligent Systems, Ferdowsi University of Mashad, Iran, pp. 29–31 (2007)Google Scholar
  19. 19.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm. Information Sciences 179, 2232–2248 (2009)CrossRefMATHGoogle Scholar
  20. 20.
    He, S., Wu, Q.H., Saunders, J.R.: Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching behavior. IEEE Tran. Evol. Comp. 13, 973–990 (2009)CrossRefGoogle Scholar
  21. 21.
    CIS Publication Spotlight. IEEE Computational Intelligence Magazine 5, 5 (February 2010)Google Scholar
  22. 22.
    Glover, F.: Generating Diverse Solutions For Global Function Optimization (2010),
  23. 23.
    Glover, F.: A Template for Scatter Search and Path Relinking,
  24. 24.
    Omran, M.G.H.: private communication, Dept. of Computer Science, Gulf University for Science & Technology, Hawally 32093, KuwaitGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Richard A. Formato
    • 1
  1. 1.Registered Patent Attorney & Consulting EngineerHarwichUSA

Personalised recommendations