Representing Covert Movements by Delimited Continuations

  • Daisuke Bekki
  • Kenichi Asai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6284)


In phenomena which have been claimed to require “covert movements” in generative terms, a relevant lexical item seems to require a means to somehow refer to the meaning of its surroundings in order for the meaning of the whole sentence to be properly computed. This has motivated generative/transformational grammars to adopt a movement of the relevant item to the position where its scope contains surroundings that influence its meaning, while it remains as an issue to be solved for categorial/Lambek-style grammars, namely, grammars without movements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Barker (2001)]
    Barker, C.: Introducing Continuations. In: Hastings, R., Jackson, B., Zvolenszky, Z. (eds.) SALT 11, CLC Publications, Ithaca (2001)Google Scholar
  2. [Barker (2002)]
    Barker, C.: Continuations and the Nature of Quantification. Natural Language Semantics 10(3), 211–241 (2002)CrossRefGoogle Scholar
  3. [Barker (2004)]
    Barker, C.: Continuations in Natural Language. In: H. Thielecke (ed.): the Fourth ACM SIGPLAN Continuations Workshop (CW 2004). Technical Report CSR-04-1, School of Computer Science, University of Birmingham, Birmingham B15 2TT. United Kingdom, pp. 1–11 (2004)Google Scholar
  4. [Barker and Shan (2006)]
    Barker, C., Shan, C.-c.: Types as Graphs: Continuations in Type Logical Grammar. Journal of Logic, Language and Information 15(4), 331–370 (2006)CrossRefMATHGoogle Scholar
  5. [Bekki (2009)]
    Bekki, D.: Monads and Meta-Lambda Calculus. In: Hattori, H. (ed.) New Frontiers in Artificial Intelligence (JSAI 2008 Conference and Workshops, Asahikawa, Japan, Revised Selected Papers), June 2008. LNCS (LNAI), vol. 5447, pp. 193–208. Springer, Heidelberg (2009)Google Scholar
  6. [Danvy and Filinski (1990)]
    Danvy, O., Filinski, A.: Abstracting Control. In: LFP 1990, the 1990 ACM Conference on Lisp and Functional Programming, pp. 151–160 (1990)Google Scholar
  7. [Danvy and Filinski (1992)]
    Danvy, O., Filinski, A.: Representing control. Mathematical Structures in Computer Science 2(4) (1992)Google Scholar
  8. [de Groote (2001)]
    de Groote, P.: Type raising, continuations, and classical logic. In: van Rooij, R., Stokhof, M. (eds.) The 13th Amsterdam Colloquium. Institute for Logic, Language and Computation, pp. 97–101. Universiteit van Amsterdam (2001)Google Scholar
  9. [Dybvig et al. (2007)]
    Dybvig, R.K., Peyton-Jones, S., Sabry, A.: A Monadic Framework for Delimited Continuations. Journal of Functional Programming 17(6), 687–730 (2007)MATHGoogle Scholar
  10. [Felleisen (1988)]
    Felleisen, M.: The Theory and Practice of First-Class Prompts. In: 15th ACM Symposium on Principles of Programming Languages, pp. 180–190 (1988)Google Scholar
  11. [Hayashishita (2003)]
    Hayashishita, J.R.: ‘Syntactic Scope and Non-Syntactic Scope’. In: Doctoral dissertation, University of Southern California (2003)Google Scholar
  12. [Kratzer (1998)]
    Kratzer, A.: Scope or pseudoscope? Are there wide scope indefinites? In: Rothstein, S. (ed.) Events and Grammar, pp. 163–196. Kluwer, Dordrecht (1998)CrossRefGoogle Scholar
  13. [Otake (2008)]
    Otake, R.: Delimited continuation in the grammar of Japanese. Talk presented at Continuation Fest, Tokyo (2008)Google Scholar
  14. [Partee and Rooth (1983)]
    Partee, B., Rooth, M.: Generalized conjunction and type ambiguity. In: Bauerle, R., Schwarze, C., Von Stechow, A. (eds.) Meaning, Use and Interpretation of Language, pp. 361–393. Walter De Gruyter Inc., Berlin (1983)Google Scholar
  15. [Plotkin (1975)]
    Plotkin, G.D.: Call-by-Name, Call-by Value and the Lambda Calculus. Theoretical Computer Science 1, 125–159 (1975)CrossRefMATHGoogle Scholar
  16. [Rooth (1992)]
    Rooth, M.: A Theory of Focus Interpretation. Natural Language Semantics 1, 75–116 (1992)CrossRefGoogle Scholar
  17. [Shan (2002)]
    Shan, C.-c.: A continuation semantics of interrogatives that accounts for Baker’s ambiguity. In: Jackson, B. (ed.) Semantics and Linguistic Theory XII, Ithaca, pp. 246–265. Cornell University Press (2002)Google Scholar
  18. [Shan (2007)]
    Shan, C.-c.: Linguistic side effects. In: Barker, C., Jacobson, P. (eds.) Direct compositionality, pp. 132–163. Oxford University Press, Oxford (2007)Google Scholar
  19. [Shan and Barker (2006)]
    Shan, C.-c., Barker, C.: Explaining Crossover and Superiority as Left-to-right Evaluation. Linguistics and Philosophy 29(1), 91–134 (2006)CrossRefGoogle Scholar
  20. [Sitaram (1993)]
    Sitaram, D.: Handling Control. In: The ACM Conference on Programming Language Design and Implementation (PLDI 1993). ACM SIGPLAN Notices, vol. 28, pp. 147–155. ACM Press, New York (1993)CrossRefGoogle Scholar
  21. [Sitaram and Felleisen (1990)]
    Sitaram, D., Felleisen, M.: Control delimiters and their hierarchies. LISP and Symbolic Computation 3(1), 67–99 (1990)CrossRefGoogle Scholar
  22. [Stratchey and Wadsworth (1974)]
    Stratchey, C., Wadsworth, C.: ‘Continuations: a mathematical semantics for handling full jumps’. Technical report, Oxford University, Computing Laboratory (1974)Google Scholar
  23. [Wagner (2006)]
    Wagner, M.: NPI-Licensing and Focus Movement. In: Georgala, E., Howell, J. (eds.) SALT XV, CLC Publications, Ithaca (2006)Google Scholar
  24. [Winter (2001)]
    Winter, Y.: Flexibility Principle in Boolean Semantics: coordination, plurality and scope in natural language. MIT Press, Cambridge (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daisuke Bekki
    • 1
  • Kenichi Asai
    • 1
  1. 1.Department of Information Science, Faculty of ScienceOchanomizu UniversityTokyoJapan

Personalised recommendations