Skip to main content

Implantate und Biomechanik des oberen Sprunggelenks

  • Chapter
  • First Online:
Book cover AE-Manual der Endoprothetik
  • 2712 Accesses

Zusammenfassung

Das obere Sprunggelenk (OSG) gehört aufgrund seiner Morphologie und den biomechanischen Eigenschaften zu einer Sonderform der Scharniergelenke – zu den Kardangelenken. Das Gelenk zeichnet sich durch eine sehr hohe Kongruenz der Gelenkoberflächen aus. Zu den morphologischen und funktionellen Bestandteilen des OSG gehören drei Knochen (Tibia, Fibula und Talus) sowie ein komplexer Bandapparat (Abb. 4.1). Die Malleolengabel, welche von den distalen Enden der Tibia und der Fibula geformt wird, bildet dabei die konkave Gelenkfläche, der Talus die korrespondierende konvexe Gelenkfläche. Der Bandapparat setzt sich aus den medialen und lateralen Kollateralbändern sowie der Syndesmose zusammen. Eine wichtige Bedeutung bei der Funktionalität des Gelenks kommt den gelenkübergreifenden Sehnen und Muskeln zu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Adam C, Eckstein F, Milz S, Putz R (1998) The distribution of cartilage thickness within the joints of the lower limb of elderly individuals. J Anat 193:203–214

    Article  PubMed  Google Scholar 

  • Barg A, Elsner A, Chuckpaiwong B, Hintermann B (2010) Insert position in three-component total ankle replacement. Foot Ankle Int 31:754–759

    Article  PubMed  Google Scholar 

  • Barg A, Elsner A, Anderson AE, Hintermann B (2011) The effect of three-component total ankle misalignment on clinical outcome: Pain relief and functional outcome in 317 consecutive patients. J Bone Joint Surg Am (accepted for publication)

    Google Scholar 

  • Boss AP, Hintermann B (2002) Anatomical study of the medial ankle ligament complex. Foot Ankle Int 23:547–553

    PubMed  Google Scholar 

  • de Asla RJ, Wan L, Rubash HE, Li G (2006) Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique. J Orthop Res 24:1019–1027

    Article  PubMed  Google Scholar 

  • de Asla RJ, Kozanek M, Wan L, Rubash HE, Li G (2009) Function of anterior talofibular and calcaneofibular ligaments during in-vivo motion of the ankle joint complex. J Orthop Surg Res 4:7

    Article  PubMed  Google Scholar 

  • Earll M, Wayne J, Brodrick C, Vokshoor A, Adelaar R (1996) Contribution of the deltoid ligament to ankle joint contact characteristics: a cadaver study. Foot Ankle Int 17:317–324

    PubMed  CAS  Google Scholar 

  • el Khoury GY, Alliman KJ, Lundberg HJ, Rudert MJ, Brown TD, Saltzman CL (2004) Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CT arthrography versus MR imaging. Radiology 233:768–773

    Article  PubMed  Google Scholar 

  • Espinosa N, Walti M, Favre P, Snedeker JG (2010) Misalignment of total ankle components can induce high joint contact pressures. J Bone Joint Surg Am 92:1179–1187

    Article  PubMed  CAS  Google Scholar 

  • Frigg A, Frigg R, Hintermann B, Barg A, Valderrabano V (2007) The biomechanical influence of tibio-talar containment on stability of the ankle joint. Knee Surg Sports Traumatol Arthrosc 15:1355–1362

    Article  PubMed  Google Scholar 

  • Fuchs S, Sandmann C, Skwara A, Chylarecki C (2003) Quality of life 20 years after arthrodesis of the ankle. A study of adjacent joints. J Bone Joint Surg Br 85:994–998

    Article  PubMed  CAS  Google Scholar 

  • Goh JC, Mech AM, Lee EH, Ang EJ, Bayon P, Pho RW (1992) Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection. Clin Orthop Relat Res 279:223–228

    PubMed  Google Scholar 

  • Haraguchi N, Armiger RS, Myerson MS, Campbell JT, Chao EY (2009) Prediction of three-dimensional contact stress and ligament tension in the ankle during stance determined from computational modeling. Foot Ankle Int 30:177–185

    Article  PubMed  Google Scholar 

  • Hartford JM, Gorczyca JT, McNamara JL, Mayor MB (1995) Tibiotalar contact area. Contribution of posterior malleolus and deltoid ligament. Clin Orthop Relat Res 320:182–187

    PubMed  Google Scholar 

  • Hayes A, Tochigi Y, Saltzman CL (2006) Ankle morphometry on 3D-CT images. Iowa Orthop J 26:1–4

    PubMed  Google Scholar 

  • Hintermann B (2005) Endoprothetik des Sprunggelenks: Historischer Überblick, aktuelle Therapiekonzepte und Entwicklungen. Springer, Wien

    Google Scholar 

  • Hintermann B, Nigg BM (1995) In vitro kinematics of the axially loaded ankle complex in response to dorsiflexion and plantarflexion. Foot Ankle Int 16:514–518

    PubMed  CAS  Google Scholar 

  • Hintermann B, Dick W (2006) Arthrodese oder Prothese? Neue Aspekte in der Behandlung der endgradigen Arthrose des Sprunggelenks. Orthopäde 35:487–488

    Article  PubMed  CAS  Google Scholar 

  • Hintermann B, Nigg BM, Sommer C (1994) Foot movement and tendon excursion: an in vitro study. Foot Ankle Int 15:386–395

    PubMed  CAS  Google Scholar 

  • Hintermann B, Sommer C, Nigg BM (1995) Influence of ligament transection on tibial and calcaneal rotation with loading and dorsi-plantarflexion. Foot Ankle Int 16:567–571

    PubMed  CAS  Google Scholar 

  • Hintermann B, Valderrabano V, Knupp M, Horisberger M (2006) Die HINTEGRA-Sprunggelenkprothese: Kurz- und mittelfristige Erfahrungen. Orthopäde 35:533–545

    Article  PubMed  CAS  Google Scholar 

  • Holz U (2006) Posttraumatische Arthrose: Arthrodese/Endoprothese. Was ist zu empfehlen? Trauma Berufskrankh 8 (Suppl 1):S20–S25

    Google Scholar 

  • Hvid I, Rasmussen O, Jensen NC, Nielsen S (1985) Trabecular bone strength profiles at the ankle joint. Clin Orthop Relat Res 199:306–312

    PubMed  Google Scholar 

  • Inman VT (1976) The Joints of the Ankle. Williams & Wilkins, Baltimore

    Google Scholar 

  • Knupp M, Valderrabano V, Hintermann B (2003) Anatomische und biomechanische Überlegungen zur Sprunggelenkprothetik. Orthopäde 35:489–494

    Article  Google Scholar 

  • Kofoed H (1999) Die Entwicklung der Sprunggelenksarthroplastik. Orthopäde 28:804–811

    PubMed  CAS  Google Scholar 

  • Lechler P, Grifka J, Köck FX (2011) Sprunggelenkendoprothetik: Indikation und Stand. Orthopäde 40:561–572

    Article  PubMed  CAS  Google Scholar 

  • Lee KB, Cho SG, Hur CI, Yoon TR (2008) Perioperative complications of HINTEGRA total ankle replacement: our initial 50 cases. Foot Ankle Int 29:978–984

    Article  PubMed  Google Scholar 

  • Lundberg A, Svensson OK, Nemeth G, Selvik G (1989) The axis of rotation of the ankle joint. J Bone Joint Surg Br 71:94–99

    PubMed  CAS  Google Scholar 

  • Magerkurth O, Knupp M, Ledermann H, Hintermann B (2006) Evaluation of hindfoot dimensions: a radiological study. Foot Ankle Int 27:612–616

    PubMed  Google Scholar 

  • Millington SA, Li B, Tang J, Trattnig S, Crandall JR, Hurwitz SR et al. (2007a) Quantitative and topographical evaluation of ankle articular cartilage using high resolution MRI. J Orthop Res 25:143–151

    Article  Google Scholar 

  • Millington SA, Grabner M, Wozelka R, Hurwitz S, Crandall J (2007b) A stereophotographic study of ankle joint contact area. J Orthop Res 25:1465–1473

    Article  Google Scholar 

  • Millington SA, Grabner M, Wozelka R, Anderson DD, Hurwitz SR, Crandall JR (2007c) Quantification of ankle articular cartilage topography and thickness using a high resolution stereophotography system. Osteoarthritis Cartilage 15:205–211

    Article  CAS  Google Scholar 

  • Moraes MR, Cavalcante ML, Leite JA, Ferreira FV, Castro AJ, Santana MG (2008) Histomorphometric evaluation of mechanoreceptors and free nerve endings in human lateral ankle ligaments. Foot Ankle Int 29:87–90.

    Article  PubMed  Google Scholar 

  • Mulfinger GL, Trueta J (1970) The blood supply of the talus. J Bone Joint Surg Br 52:160–167

    PubMed  CAS  Google Scholar 

  • Müller-Gerbl M (2001) Anatomie und Biomechanik des oberen Sprunggelenks. Orthopäde 30:3–11

    Article  PubMed  Google Scholar 

  • Pal GP, Routal RV (1998) Architecture of the cancellous bone of the human talus. Anat Rec 252:185–193

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum D, Becker HP, Wilke HJ, Claes LE (1998) Tenodeses destroy the kinematic coupling of the ankle joint complex. A three-dimensional in vitro analysis of joint movement. J Bone Joint Surg Br 80:162–168

    Article  PubMed  CAS  Google Scholar 

  • Stauffer RN, Chao EY, Brewster RC (1977) Force and motion analysis of the normal, diseased, and prosthetic ankle joint. Clin Orthop 127:189–196

    PubMed  Google Scholar 

  • Thordarson DB, Motamed S, Hedman T, Ebramzadeh E, Bakshian S (1997) The effect of fibular malreduction on contact pressures in an ankle fracture malunion model. J Bone Joint Surg Am 79:1809–1815

    PubMed  CAS  Google Scholar 

  • Tochigi Y, Rudert MJ, Brown TD, McIff TE, Saltzman CL (2005) The effect of accuracy of implantation on range of movement of the Scandinavian Total Ankle Replacement. J Bone Joint Surg Br 87:736–740

    Article  PubMed  CAS  Google Scholar 

  • Valderrabano V, Hintermann B, Nigg BM, Stefanyshyn D, Stergiou P (2003) Kinematic changes after fusion and total replacement of the ankle: part 1: Range of motion. Foot Ankle Int 24:881–887

    PubMed  Google Scholar 

  • Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B (2009) Etiology of ankle osteoarthritis. Clin Orthop Relat Res 467:1800–1806

    Article  PubMed  Google Scholar 

  • Wan L, de Asla RJ, Rubash HE, Li G (2006) Determination of in-vivo articular cartilage contact areas of human talocrural joint under weightbearing conditions. Osteoarthritis Cartilage 14:1294–1301

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Whittle M, Cunningham J, Kenwright J (1996) Fibula and its ligaments in load transmission and ankle joint stability. Clin Orthop Relat Res 330:261–270

    Article  PubMed  Google Scholar 

Download references

Danksagung:

Die Autoren bedanken sich bei Herren Professoren C.L. Saltzman und A.E. Anderson, Salt Lake City, USA, für zahlreiche konstruktive Diskussionen und bei den Kollegen Dr. med. A. Beck und Dr. med. T. Suter, Kantonsspital Liestal, für sorgfältige Korrektur des Kapitels.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Arbeitsgemeinschaft Endoprothetik

About this chapter

Cite this chapter

Barg, A., Hintermann, B. (2011). Implantate und Biomechanik des oberen Sprunggelenks. In: Neumann, H. (eds) AE-Manual der Endoprothetik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14886-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14886-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14885-9

  • Online ISBN: 978-3-642-14886-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics