Skip to main content

Abstract

Arabidopsis thaliana belongs to the family Brassicaceae and possesses several important traits that have made it an excellent model organism. The wild relative species of Arabidopsis provide excellent tools to study its genetic diversity, origin, and evolution. Current molecular tools are being utilized to study the genes and their introgression into Brassica crops. This chapter emphasizes on the understanding of genomic synteny among various members of Brassica and Arabidopsis. It also describes the analysis of wild species of Arabidopsis and their role in understating the origin and evolution of member species of Brassica. Several backcross populations of Arabidopsis have been used to investigate the extent of chromosome differentiation between two species and elucidate the genome differentiation in closely related species. Such studies led to the identification of loci that contribute to genetic isolation between the two species because such loci are expected to be introgressed at a slower rate than neutral loci or loci that are positively selected. Using comparative DNA sequence analysis of a plastid and a nuclear locus across the whole genus Arabidopsis, a phylogenetic framework for all known closest relatives of A. thaliana was introduced. Considerable intraspecific genetic variation occurs among different geographical isolates, and this variation, which is largely quantitative in nature, is being studied by using methods developed for the analysis of quantitative trait loci in crop plants. However, the enormous store of natural variation that is manifested in interspecific differences has been largely ignored. The generation and analysis of interspecific hybrids between A. thaliana and related species would provide an additional unique resource for the functional analysis of the Arabidopsis genome. Comprehensive overview on genetic diversity on all Arabidopsis segregates are discussed in this chapter, which contribute substantially to the knowledge on Arabidopsis wild relatives and, therefore, stimulate further research in these non-model plants.

This chapter was equally contributed by Panthee and Bhattacharya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alix K, Heslop-Harrison JS (2004) The diversity of retroelements in diploid and allotetraploid Brassica species. Plant Mol Biol 54:895–909

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29

    Article  CAS  PubMed  Google Scholar 

  • Altmann T, Benfey P, Casal J, Crosby B, Furner I, Guerlnot ML et al (2004) The multinational coordinated Arabidopsis thaliana functional genomics project. Multinational Steering Committee Report. The European Arabidopsis Stock Centre, Nottingham, UK

    Google Scholar 

  • Bennett MD, Smith JB (1991) Nuclear DNA amounts in Angiosperms. Phil Trans R Soc Lond B 334:309–345

    Article  CAS  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsitum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    CAS  PubMed  Google Scholar 

  • Blanc G, Barakat A, Guyot R, Cooke R, Delseny M (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12(7):1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Bushell C, Spielman M, Scott RJ (2003) The basis of natural and artificial postzygotic hybridization barriers in Arabidopsis species. Plant Cell 15:1430–1442

    Article  CAS  PubMed  Google Scholar 

  • Cavell AC, Lydiate DJ, Parkin IAP, Dean C, Trick M (1998) Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome 41:62–69

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B (1995a) Quantitative genetics in plants: the effect of the breeding system on genetic variability. Evolution 49:911–920

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1995b) Transposable elements in inbreeding and outbreeding populations. Genetics 140:415–417

    CAS  PubMed  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Schölkopf B, Nordborg M, Rätsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317(5836):338–342

    Article  CAS  PubMed  Google Scholar 

  • Comai L, Tyagi A, Winter K, Holmes-Davis S, Reynolds R, Stevens Y, Byers B (2000) Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell 12:1551–1567

    Article  CAS  PubMed  Google Scholar 

  • Galloway GL et al (1998) Phylogenetic utility of the nuclear gene arginine decarboxylase: an example from Brassicaceae. Mol Biol Evol 15:1312–1320

    CAS  PubMed  Google Scholar 

  • Hall AE, Fiebig A, Preuss D (2002) Beyond the Arabidopsis genome: opportunities for comparative genomics. Plant Physiol 129:1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Hene L, Sreenu VB, Vuong MT, Abidi SHI, Sutton JK, Rowland-Jones SL, Davis SJ, Evans EJ (2007) Deep analysis of cellular transcriptomes – LongSAGE versus classic MPSS. BMC Genomics 8:333

    Google Scholar 

  • Innan H, Stephan W (2000) The coalescent in an exponentially growing metapopulation and its application to Arabidopsis thaliana. Genetics 155:2015–2019

    CAS  PubMed  Google Scholar 

  • Kaczmarek M, Koczyk G, Ziolkowski PA, Babula-Skowronska D, Sadowski J (2009) Comparative analysis of the Brassica oleracea genetic map and the Arabidopsis thaliana genome. Genome 52:620–633

    Article  CAS  PubMed  Google Scholar 

  • Karkkainen K, Kuittinen H, van Treuren R, Vogl C, Oikarinen S, Savolainen O (1999) Genetic basis of inbreeding depression in Arabis petraea. Evolution 53:1354–1365

    Article  Google Scholar 

  • Katam R, Panthee DR, Basenko EY, Bandhopadhaya A, Basha SM, Eswaran KD (2010) Arabidopsis genome initiative. In: Kole C, Abbott AG (eds) Principles and practices of plant genomics, vol 3, Advanced genomics. Science, Enfield, New Hampshire, USA, pp 175–204

    Chapter  Google Scholar 

  • Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci USA 104(15):6272–6277

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Wernisch M, Schmickl R (2008) Arabidopsis thaliana's wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon 57:933–943

    Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of the chalcone synthase and alcohol dehydrogenase loci among different lineages of Arabidopsis, Arabis and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    CAS  PubMed  Google Scholar 

  • Koch MA, Weisshaar B, Kroymann J, Haubold B, Mitchell-Olds T (2001) Comparative genomics and regulatory evolution: conservation and function of the Chs and Apetala3 promoters. Mol Biol Evol 18:1882–1891

    CAS  PubMed  Google Scholar 

  • Ku H, Vision T, Liu J, Tanksley S (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  CAS  PubMed  Google Scholar 

  • Kuittinen H, Aguadé M (2000) Nucleotide variation at the Chalcone Isomerase locus in Arabidopsis thaliana. Genetics 155:863–872

    CAS  PubMed  Google Scholar 

  • Lagercrantz U, Lydiate DJ (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910

    CAS  PubMed  Google Scholar 

  • Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228

    Google Scholar 

  • Lan TH, DelMonte TA, Reischmann KP, Hyman J, Kowalski SP, McFerson J, Kresovich S, Paterson AH (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788

    Article  CAS  PubMed  Google Scholar 

  • Lim GAC, Jewell EG, Li X, Erwin TA, Love C, Batley J, Spangenberg G, Edwards D (2007) A comparative map viewer integrating genetic maps for Brassica and Arabidopsis. BMC Plant Biol 7:40

    Article  PubMed  Google Scholar 

  • Liu F, Charlesworth D, Kreitman M (1999) The effect of mating system differences on nucleotide diversity at the phosphoglucose isomerase l locus in the plant genus Leavenworthia. Genetics 151:343–357

    CAS  PubMed  Google Scholar 

  • Lukens L, Zou F, Lydiate D, Parkin I, Osborn T (2003) Comparison of a Brassica Oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164:359–372

    CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2005) The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol 26(1):85–98

    Article  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK, Good AG, Parkin IAP (2005) Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  CAS  PubMed  Google Scholar 

  • Mesicek J (1970) Chromosome counts in Cardaminopsis arenosa Agg. (Cruciferae). Preslia 42:225–248

    Google Scholar 

  • Monforte AJ, Tanksley SD (2000) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hisrutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA, Lim MH, Kim JS, Baek S, Choi BS, Yu HJ, Kim DS, Kim N, Lim KB, Lee SI, Hahn JH, Lim YP, Bancroft I, Park BS (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111

    Article  PubMed  Google Scholar 

  • O’Kane SL, Al-shehbaz IA (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7:323–327

    Article  Google Scholar 

  • O’kane S, Schaal B, Al-Shehbaz I (1996) The origin of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Syst Bot 21:559–566

    Article  Google Scholar 

  • Osborn T, Pires J, Birchler J, Auger D, Chen Z et al (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    Article  CAS  PubMed  Google Scholar 

  • Panjabi PJA, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113

    Article  PubMed  Google Scholar 

  • Parida SK, Yadava DK, Mohapatra T (2010) Microsatellites in Brassica unigenes: relative abundance, marker design, and use in comparative physical mapping and genome analysis. Genome 53:55–67

    Article  CAS  PubMed  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Pigliucci M, Schmitt J (2004) Phenotypic plasticity in response to foliar and neutral shade in gibberellin mutants of Arabidopsis thaliana. Evol Ecol Res 6:243–249

    Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245

    Article  CAS  PubMed  Google Scholar 

  • Qiu WG, Schisler N, Stoltzfus A (2004) The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol Biol Evol 21:1252–1263

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Gao M, Li G, Quiros C (2009) Comparative sequence analysis for Brassica oleracea with similar sequences in B. rapa and Arabidopsis thaliana. Plant Cell Rep 28:649–661

    Article  CAS  PubMed  Google Scholar 

  • Quiros CF, Grellet F, Sadowski J, Suzuki T, Li G, Wroblewski T (2001) Arabidopsis and Brassica comparative genomics: sequence, structure and gene content in the ABI1-Rps2-Ck1 chromosomal segment and related regions. Genetics 157:1321–1330

    CAS  PubMed  Google Scholar 

  • Ramos-Onsins SE, Stranger BE, Mitchell-Olds T, Aguadé M (2004) Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata. Genetics 166:373–388

    Article  CAS  PubMed  Google Scholar 

  • Redei GP (1974) Is Hylandra an amphidiploid of Arabidopsis and Cardaminopsis arenosa? Arabidopsis Inf Serv 11:5

    Google Scholar 

  • Redei GP (1992) A heuristic glance at the past of Arabidopsis genetics. In: Koncz NHCC, Schell J (eds) Methods in Arabidopsis research. World Scientific, Singapore, 115 p

    Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999) Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152:713–727

    CAS  PubMed  Google Scholar 

  • Rieseberg LH, Baird SJE, Gardner KA (2000) Hybridization, introgression, and linkage evolution. Plant Mol Biol 42:205–224

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg NA, Nordborg M (2002) Genealogical trees, coalescent theory, and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390

    Article  CAS  PubMed  Google Scholar 

  • Roy BA (1995) The breeding systems of six species of Arabis (Brassicaceae). Am J Bot 82:869–877

    Article  Google Scholar 

  • Säll T, Jakobsson M, Lind-Halldén C, Halldén C (2003) Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J Evol Biol 16:1019–1029

    Article  PubMed  Google Scholar 

  • Savolainen O, Langley CH, Lazzaro BP, Fréville H (2000) Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana. Mol Biol Evol 17:645–655

    CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Shimizu KK, Fujii S, Marhold K, Watanabe K, Kudoh H (2005) Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and A. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, new combinations. Acta Phytotax Geobot 56:163–172

    Google Scholar 

  • Snowdon RD (2007) Cytogenetics and genome analysis in Brassica crops. Chrom Res 15:85–95

    Article  CAS  PubMed  Google Scholar 

  • Soltis D, Soltis P (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    CAS  Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. E. Arnold, London, UK

    Google Scholar 

  • The Arabidopsis Genome initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast RS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Quijada PA, Osborn TC (2005) Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics 169:967–979

    Article  CAS  PubMed  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Kim SH, Lim YP, Park BS (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp Funct Genom 6:138–146

    Article  Google Scholar 

  • Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Yogeeswaran K, Frary A, York TL, Amenta A, Lesser AH, Nasrallah JB, Tanksley SD, Nasrallah ME (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    Article  CAS  PubMed  Google Scholar 

  • Zhang JF, Lu Y, Yuan YX, Zhang XW, Geng JF, Chen Y, Cloutier S, McVetty PBE, Li GY (2009) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69:553–563

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Katam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katam, R., Panthee, D.R., Bhattacharya, A., Basha, S.M., Kole, C. (2011). Arabidopsis. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14871-2_1

Download citation

Publish with us

Policies and ethics