Advertisement

Scheduling Algorithms for Tree-Based Data Collection in Wireless Sensor Networks

  • Ozlem Durmaz Incel
  • Amitabha Ghosh
  • Bhaskar Krishnamachari
Chapter
Part of the Monographs in Theoretical Computer Science. An EATCS Series book series (EATCS)

Abstract

Data collection is a fundamental operation in wireless sensor networks (WSN) where sensor nodes measure attributes about a phenomenon of interest and transmit their readings to a common base station. In this chapter, we survey contention-free time division multiple access (TDMA)-based scheduling protocols for such data collection applications over tree-based routing topologies. We classify the algorithms according to their common design objectives, identifying the following four as the most fundamental and most studied with respect to data collection in WSNs: (i) minimizing schedule length, (ii) minimizing latency, (iii) minimizing energy consumption, and (iv) maximizing fairness. We also describe the pros and cons of the underlying design constraints and assumptions and provide a taxonomy according to these metrics. Finally, we discuss some open problems together with future research directions.

Keywords

Sensor Node Time Slot Sink Node Time Division Multiple Access Virtual Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V. Annamalai, S. Gupta, L. Schwiebert. On tree-based convergecasting in wireless sensor networks. In: WCNC ’03, volume 3, pages 1942–1947, New Orleans, LA, USA, 2003.Google Scholar
  2. 2.
    K. Arisha, M. Youssef, M. Younis. Energy-aware tdma-based mac for sensor networks. System-level power optimization for wireless multimedia communication pages 21–40, 2002.Google Scholar
  3. 3.
    I.N. Baljeet Malhotra, M.A. Nascimento. Aggregation convergecast scheduling in wireless sensor networks. Technical report, University of Alberta, 2009.Google Scholar
  4. 4.
    CC2420: Single-chip 2.4 ghz ieee 802.15.4 compliant and zigbee(tm) ready rf transceiver. http://www.ti.com/lit/gpn/cc2420.
  5. 5.
    D. Chafekar, V.A. Kumar, M. Marathe, S. Parthasarathy, A. Srinivasan. Cross-layer latency minimization in wireless networks with SINR constraints. In: MobiHoc ’07, ACM, New York, NY, pages 110–119, Montreal, Quebec, Canada, 2007.Google Scholar
  6. 6.
    D. Chafekar, V.S.A. Kumar, M.V. Marathe, 0002. S.Parthasarathy, A. Srinivasan. Approximation algorithms for computing capacity of wireless networks with SINR constraints. In: INFOCOM, pages 1166–1174, Phoenix, AZ, USA, 2008.Google Scholar
  7. 7.
    S. Chatterjea, L. van Hoesel, P. Havinga. Ai-lmac: An adaptive, information-centric and lightweight mac protocol for wireless sensor networks. In: Issnip ’04, Melbourne, Australia, 2004.Google Scholar
  8. 8.
    X. Chen, X. Hu, J. Zhu. Minimum data aggregation time problem in wireless sensor networks. In: MSN, pages 133–142, Wuhan, China, 2005.Google Scholar
  9. 9.
    K. Chintalapudi, T. Fu, J. Paek, N. Kothari, S. Rangwala, J. Caffrey, R. Govindan, E. Johnson, S. Masri. Monitoring civil structures with a wireless sensor network. IEEE Internet Computing, 10(2): 26–34, 2006.CrossRefGoogle Scholar
  10. 10.
    K.K. Chintalapudi, L. Venkatraman. On the design of mac protocols for low-latency hard real-time discrete control applications over 802.15.4 hardware. In: IPSN ’08, pages 356–367, St. Louis, MO, USA, 2008.Google Scholar
  11. 11.
    I. Chlamtac, S. Kutten. Tree-based broadcasting in multihop radio networks. IEEE Transactions on Computers 36(10): 1209–1233 (1987)CrossRefGoogle Scholar
  12. 12.
    H. Choi, J. Wang, E. Hughes. Scheduling for information gathering on sensor network. Wireless Networks (Online) (2007)Google Scholar
  13. 13.
    S. Cui, R. Madan, A. Goldsmith, S. Lall. Energy-delay tradeoffs for data collection in tdma-based sensor networks. In: ICC ’05, volume 5, pages 3278–3284, Seoul, Korea, 2005.Google Scholar
  14. 14.
    M. Dalbro, E. Eikeland, A.J.i. Veld, S. Gjessing, T.S. Lande, H.K. Riis, O. Sør(\(\dot{a}\))sen. Wireless sensor networks for off-shore oil and gas installations. In: SENSORCOMM ’08, pages 258–263, Cap Esterel, France, 2008.Google Scholar
  15. 15.
    I. Demirkol, C. Ersoy, F. Alagoz. Mac protocols for wireless sensor networks: A survey. IEEE Communications Magazine 44(4): 115–121, 2006.CrossRefGoogle Scholar
  16. 16.
    P. Djukic, S. Valaee. Link scheduling for minimum delay in spatial re-use tdma. In: Infocom ’07, pages 28–36, IEEE, Anchorage, Alaska, USA, 2007.Google Scholar
  17. 17.
    E. Duarte-Melo, M. Liu. Data-gathering wireless sensor networks: Organization and capacity. Computer Networks 43(4): 519–537, 2003.MATHCrossRefGoogle Scholar
  18. 18.
    T. ElBatt, A. Ephremides. Joint scheduling and power control for wireless ad-hoc networks. In: Infocom ’02, volume 2, pages 976–984, 2002.Google Scholar
  19. 19.
    J. Elson, L. Girod, D. Estrin. Fine-grained network time synchronization using reference broadcasts. SIGOPS Operator Systems Review, 36(SI): 147–163, 2002.CrossRefGoogle Scholar
  20. 20.
    S. Ergen, P. Varaja. Tdma scheduling algorithms for sensor networks. Technical report, University of California, Berkeley, 2005.Google Scholar
  21. 21.
    S. Fan, L. Zhang, Y. Ren. Approximation algorithms for link scheduling with physical interference model in wireless multi-hop networks. CoRR abs/0910.5215, 2009.Google Scholar
  22. 22.
    C. Florens, M. Franceschetti, R. McEliece. Lower bounds on data collection time in sensory networks. IEEE Journal on Selected Areas in Communications 22(6): 1110–1120, 2004.CrossRefGoogle Scholar
  23. 23.
    C. Florens, R. McEliece. Scheduling algorithms for wireless ad-hoc sensor networks. In: Globecom ’02, pages 6–10, IEEE, Taipei, Taiwan, 2002.Google Scholar
  24. 24.
    C. Florens, R. McEliece. Packets distribution algorithms for sensor networks. In: Infocom ’03, volume 2, pages 1063–1072, IEEE, San Francisco, CA, USA, 2003.Google Scholar
  25. 25.
    G. Foschini, Z. Miljanic. A simple distributed autonomous power control algorithm and its convergence. IEEE Transactions on Vehicular Technology 42(4): 641–646, 1993.CrossRefGoogle Scholar
  26. 26.
    S. Gandham, Y. Zhang, Q. Huang. Distributed minimal time convergecast scheduling in wireless sensor networks. In: ICDCS ’06, IEEE Computer Society, Washington, DC, page 50, 2006. DOI http://dx.doi.org/10.1109/ICDCS.2006.30
  27. 27.
    S. Gandham, Y. Zhang, Q. Huang. Distributed time-optimal scheduling for convergecast in wireless sensor networks. Computer Networks 52(3): 610–629, 2008.MATHGoogle Scholar
  28. 28.
    L. Gargano. Time optimal gathering in sensor networks. In: SIROCCO ’07, pages 7–10, 2007.Google Scholar
  29. 29.
    A. Ghosh. Estimating coverage holes and enhancing coverage in mixed sensor networks. In: LCN ’04. IEEE Computer Society, Washington, DC, pages 68–76, 2004. DOI http:// dx.doi.org/10.1109/LCN.2004.53
  30. 30.
    A. Ghosh, O.D. Incel, V.A. Kumar, B. Krishnamachari. Multi-channel scheduling algorithms for fast aggregated convergecast in sensor networks. In: MASS ’09, pages 362–372, IEEE, Macau, China.Google Scholar
  31. 31.
    GINSENG: Performance control in wireless sensor networks. www.ict-ginseng.eu
  32. 32.
    O. Goussevskaia, Y.A. Oswald, R. Wattenhofer. Complexity in geometric SINR. In: MobiHoc ’07, ACM, New York, NY, USA, pages 100–109, 2007. http://doi.acm.org/ 10.1145/1288107.1288122
  33. 33.
    J. Grönkvist, A. Hansson. Comparison between graph-based and interference-based stdma scheduling. In: MobiHoc ’01, pages 255–258, ACM, Long Beach, CA, USA, 2001.Google Scholar
  34. 34.
    P. Gupta, P. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory IT-46(2): 388–404, 2000.CrossRefMathSciNetGoogle Scholar
  35. 35.
    N.J. Harvey, R.E. Ladner, L. Lovász, T. Tamir. Semi-matchings for bipartite graphs and load balancing. Journal of Algorithms 59(1): 53–78, 2006. http://dx.doi.org/10.1016/j.jalgor.2005. 01.003MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    L. van Hoesel, P. Havinga. A lightweight medium access protocol (LMAC) for wireless sensor networks. In: INSS’ 04. SICE (Society of Instrument and Control Engineers), Tokyo, Japan, 2004.Google Scholar
  37. 37.
    D.O. Incel, A. Ghosh, B. Krishnamachari, K. Chintalapudi. Fast data collection in tree-based wireless sensor networks. IEEE Transactions on Mobile Computing (submitted), 2009.Google Scholar
  38. 38.
    O.D. Incel, B. Krishnamachari. Enhancing the data collection rate of tree-based aggregation in wireless sensor networks. In: SECON ’08, pages 569–577, IEEE, San Francisco, CA, USA, 2008.Google Scholar
  39. 39.
    K. Kalpakis, K. Dasgupta, P. Namjoshi. Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks. Computing Network 42(6): 697–716, 2003.MATHCrossRefGoogle Scholar
  40. 40.
    A. Keshavarzian, H. Lee, L. Venkatraman. Wakeup scheduling in wireless sensor networks. In: MobiHoc ’06, ACM, New York, NY, pages 322–333, 2006. http://doi.acm.org/10.1145/ 1132905.1132941
  41. 41.
    N. Lai, C.King, C. Lin. On maximizing the throughput of convergecast in wireless sensor networks. In: GPC ’08, pages 396–408, Kunming, China, 2008.Google Scholar
  42. 42.
    H. Lee, A. Keshavarzian. Towards energy-optimal and reliable data collection via collision-free scheduling in wireless sensor networks. In: INFOCOM, pages 2029–2037, Phoenix, AZ, USA, 2008.Google Scholar
  43. 43.
    H. Lee, A. Keshavarzian, H.K. Aghajan. Multi-cluster multi-parent wake-up scheduling in delay-sensitive wireless sensor networks. In: GLOBECOM, pages 430–435, New Orleans, LA, USA, 2008.Google Scholar
  44. 44.
    H. Li, P. Shenoy, K. Ramamritham. Scheduling messages with deadlines in multi-hop real-time sensor networks. In: RTAS 2005, pages 415–425, San Francisco, CA, USA, 2005.Google Scholar
  45. 45.
    X.Y. Li, Y. Wang. Simple heuristics and ptass for intersection graphs in wireless ad hoc networks. In: DIALM ’02, ACM, New York, NY, pages 62–71, 2002. http://doi.acm.org/10.1145/ 570810.570819
  46. 46.
    G. Lu, B. Krishnamachari. Minimum latency joint scheduling and routing in wireless sensor networks. Ad Hoc Netw. 5(6): 832–843, 2007. http://dx.doi.org/10.1016/j.adhoc.2007.03.002 CrossRefGoogle Scholar
  47. 47.
    G. Lu, N. Sadagopan, B. Krishnamachari, A. Goel. Delay efficient sleep scheduling in wireless sensor networks. In: INFOCOM ’05, pages 2470–2481, Miami, FL, USA, 2005.Google Scholar
  48. 48.
    M. Macedo, A. Grilo, M. Nunes. Distributed latency-energy minimization and interference avoidance in tdma wireless sensor networks. Computing Network 53(5): 569–582, 2009. http:// dx.doi.org/10.1016/j.comnet.2008.10.015CrossRefGoogle Scholar
  49. 49.
    S. Madden, M. Franklin, J. Hellerstein, W. Hong. Tinydb: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems 30(1): 122–173, 2005.CrossRefGoogle Scholar
  50. 50.
    A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, J. Anderson. Wireless sensor networks for habitat monitoring. In: WSNA ’02, pages 88–97, Atlanta, GA, USA, 2002.Google Scholar
  51. 51.
    J. Mao, Z. Wu, X. Wu. A tdma scheduling scheme for many-to-one communications in wireless sensor networks. Computer Communications 30(4): 863–872, 2007.CrossRefGoogle Scholar
  52. 52.
    T. Moscibroda. The worst-case capacity of wireless sensor networks. In: IPSN ’07, pages 1–10, Cambridge, MA, USA, 2007.Google Scholar
  53. 53.
    T. Moscibroda, R. Wattenhofer, A. Zollinger. Topology control meets SINR: The scheduling complexity of arbitrary topologies. In: MobiHoc ’06, pages 310–321, 2006.Google Scholar
  54. 54.
    F. Osterlind, A. Dunkels. Approaching the maximum 802.15.4 multi-hop throughput. In: HotEmNets 2008, Charlottesville, VA, page 6, 2008. http://eprints.sics.se/3426/01/osterlind08approaching.pdf
  55. 55.
    Y.A. Oswald, S. Schmid, R. Wattenhofer. Tight bounds for delay-sensitive aggregation. In: PODC ’08, ACM, New York, NY, pages 195–202, 2008. http://doi.acm.org/10.1145/ 1400751.1400778
  56. 56.
    M. Pan, Y. Tseng. Quick convergecast in zigbee beacon-enabled tree-based wireless sensor networks. Computer Communications 31(5): 999–1011, 2008.CrossRefGoogle Scholar
  57. 57.
    C. Papadimitriou. The complexity of the capacitated tree problem. Networks 8(3): 217–230, 1978.CrossRefMathSciNetGoogle Scholar
  58. 58.
    V. Rajendran, K. Obraczka, J. Garcia-Luna-Aceves. Energy-efficient, collision-free medium access control for wireless sensor networks. In: SenSys ’03, pages 181–192, 2003.Google Scholar
  59. 59.
    S. Ramanathan, E. Lloyd. Scheduling algorithms for multihop radio networks. IEEE/ACM Transactions on Networking 1(2): 166–177, 1993.CrossRefGoogle Scholar
  60. 60.
    Y. Revah, M. Segal. Improved lower bounds for data-gathering time in sensor networks. In: ICNS ’07, IEEE Computer Society, Washington, DC, page 76, 2007. http://dx.doi.org/ 10.1109/ICNS.2007.71
  61. 61.
    I. Rhee, A. Warrier, M. Aia, J. Min. Z-mac: A hybrid mac for wireless sensor networks. In: SenSys ’05, pages 90–101, 2005.Google Scholar
  62. 62.
    Nordic Semi Conductors, nrf905 multiband transceiver. http://www.nordicsemi.com
  63. 63.
    W. Shang, P. Wan, X. Hu. Approximation algorithm for minimal convergecast time problem in wireless sensor networks. Wireless Networks, 2009. 10.1007/s11276-009-0207-9Google Scholar
  64. 64.
    F. Sivrikaya, B. Yener. Time synchronization in sensor networks: A survey. IEEE Network 18(4): 45–50, 2004. 10.1109/MNET.2004.1316761CrossRefGoogle Scholar
  65. 65.
    J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon. Wirelesshart: Applying wireless technology in real-time industrial process control. In: RTAS ’08, pages 377–386, St. Louis, MO, USA, 2008.Google Scholar
  66. 66.
    W.Z. Song, F. Yuan, R. LaHusen, B. Shirazi. Time-optimum packet scheduling for many-to-one routing in wireless sensor networks. International Journal Parallel Emergent Distributed Systems 22(5): 355–370, 2007. http://dx.doi.org/10.1080/17445760601111459 MATHCrossRefMathSciNetGoogle Scholar
  67. 67.
    A. Sridharan, B. Krishnamachari. Max-min fair collision-free scheduling for wireless sensor networks. In: IPCCC ’04, pages 585–590, Austin, TX, USA, 2004.Google Scholar
  68. 68.
    N. Trigoni, Y. Yao, A. Demers, J. Gehrke, R. Rajaraman. Wave scheduling and routing in sensor networks. ACM Transactions on Sensor Networks 3(1): 2, 2007.CrossRefGoogle Scholar
  69. 69.
    H.W. Tsai, T.S. Chen. Minimal time and conflict-free schedule for convergecast in wireless sensor networks. In: ICC ’08, pages 2808–2812, 2008.Google Scholar
  70. 70.
    S. Upadhyayula, S. Gupta. Spanning tree based algorithms for low latency and energy efficient data aggregation enhanced convergecast (dac) in wireless sensor networks. Ad Hoc Networks 5(5): 626–648, 2007.CrossRefGoogle Scholar
  71. 71.
    T. Wang, Z. Wu, J. Mao. A new method for multi-objective tdma scheduling in wireless sensor networks using pareto-based pso and fuzzy comprehensive judgement. In: HPCC ’07, Springer, Berlin, pages 144–155, 2007.Google Scholar
  72. 72.
    B. Yu, J. Li, Y. Li. Distributed data aggregation scheduling in wireless sensor networks. In: Infocom ’09, Rio de Janeiro, Brazil, 2009.Google Scholar
  73. 73.
    L. Yu, N. Wang, X. Meng. Real-time forest fire detection with wireless sensor networks. In: WiCom, volume 2, pages 1214–1217, 2005.Google Scholar
  74. 74.
    Y. Yu, B. Krishnamachari, V.K. Prasanna. Energy-latency tradeoffs for data gathering in wireless sensor networks. In: INFOCOM, Hong Kong, China, 2004.Google Scholar
  75. 75.
    H. Zhang, F. Österlind, P. Soldati, T. Voigt, M. Johansson. Time-optimal convergecast with separated packet copying. Technical report, Royal Institute of Technology (KTH) (2009)Google Scholar
  76. 76.
    H. Zhang, P. Soldati, M. Johansson. Optimal link scheduling and channel assignment for convergecast in linear wirelessHART networks. In: WiOPT ’09, Seoul, Korea, 2009.Google Scholar
  77. 77.
    Y. Zhang, S. Gandham, Q. Huang. Distributed minimal time convergecast scheduling for small or sparse data sources. In: RTSS ’07, IEEE Computer Society, Washington, DC, pages 301–310, 2007. http://dx.doi.org/10.1109/RTSS.2007.19

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ozlem Durmaz Incel
    • 1
  • Amitabha Ghosh
    • 2
  • Bhaskar Krishnamachari
    • 2
  1. 1.NETLAB, Department of Computer EngineeringBogazici UniversityBebekTurkey
  2. 2.Ming Hsieh Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations