Skip to main content

Retrieval of Aerosol Properties

  • Chapter
  • First Online:

Part of the book series: Physics of Earth and Space Environments ((EARTH))

Abstract

Atmospheric aerosol is a suspension of liquid and solid particles in air, i.e. the aerosol includes both particles and its surrounding medium; in practice aerosol is usually referred to as the suspended matter, i.e. the particles or the droplets, depending on their aggregation state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Saadi, J., J. Szykman, R.B. Pierce, C. Kittaka, D. Neil, D.A. Chu, L. Remer, L. Gumley, E. Prins, L. Weinstock, C. MacDonald, R. Wayland, F. Dimmick and J. Fishman, 2005, Improving national air quality forecasts with satellite aerosol observations. Bulletin of the American Meteorological Society, 86, 1249–1261.

    Google Scholar 

  • Ackerman, S.A., K.I. Strabala, W.P. Menzel, R.A. Frey, C.C. Moeller, and L.E. Guclusteringey, 1998, Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 141−157.

    Google Scholar 

  • Andreae, M.O., and D. Rosenfeld, 2008, Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of could-active aerosols. Earth-Sci Rev, 89, 13–41.

    Google Scholar 

  • Apituley, A., A. Van Lammeren and H. Russchenberg, 2000, High time resolution cloud measurements with lidar during CLARA. Phys. Chem. Ear., 25, 107–113.

    Google Scholar 

  • Basist, A., D. Garrett, R. Ferraro, N.C. Grody, and K. Mitchell, 1996, A comparison between visible and Microwave snow cover products derived from satellite observations. J. Appl. Meteor., 35, 163–177.

    Google Scholar 

  • Bellouin, N., O. Boucher, J. Hayward and M. Reddy, 2005, Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438, 1138–1141.

    Google Scholar 

  • Buchholz, A., 1995, Rayleigh scattering calculations for the terrestrial atmosphere. Applied Optics 34, 2765–2773.

    Google Scholar 

  • Cairns, B., F. Waquet, K. Knobelspiesse, J. Chowdhary and J.-L Deuzé, 2009, Polarimetric remote sensing of aerosols over land surfaces, In: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 295–323.

    Google Scholar 

  • Chand, D., R. Wood, T.L. Anderson, S.K. Satheesh, and R.J. Charlson, 2009, Satellite-derived direct radiative effect of aerosols dependent on cloud cover, Nature Geoscience, 2, 181–184, doi:10.1038/NGE0437.

    Google Scholar 

  • Chu, D.A., Y.J. Kaufman, C. Ichoku, L.A. Remer, D. Tanré, B.N. Holben, 2002, Validation of MODIS aerosol optical thickness retrieval over land. Geophys. Res. Lett., 29, doi:10.1029/2001GL013205.

  • Cox, C., and W. Munk, 1954, Measurements of the roughness of the sea surface from photographs of the Sun’s glitter. J. Opt. Soc. Am., 44, 838–850.

    Google Scholar 

  • Curier R.L., J.P. Veefkind, R. Braak, B. Veihelmann, O. Torres and G. de Leeuw, 2008, Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. J. Geophys. Res., 113, D17S90, doi:10.1029/2007JD008738.

    Google Scholar 

  • de Haan J.F., P.B. Bosma, and J.W. Hovenier, 1987, The adding method for multiple scattering calculations of polarized light. Astron. Astrophys., 183, 371–391.

    Google Scholar 

  • de Leeuw, G., and A. Kokhanovsky, 2009, Introduction, In: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 1–18.

    Google Scholar 

  • de Leeuw, G., A.N. de Jong, J. Kusmierczyk-Michulec, R. Schoemaker, M. Moerman, P. Fritz, J. Reid and B. Holben, 2005, Aerosol Retrieval Using Transmission and Multispectral AATSR Data, in: J.S. Reid, S.J. Piketh, R. Kahn, R.T. Bruintjes and B.N. Holben (editors) A Summary of First Year Activities of the United Arab Emirates Unified Aerosol Experiment: UAE2. NRL Report Nr. NRL/MR/7534–05-8899, pp 105–110.

    Google Scholar 

  • Deschamps, P.Y., F.-M. Breon, M. Leroy, A. Podaire, A. Bricaud, J.C. Buriez, and G. Seze, 1994, The POLDER Mission : Instrument characteristics and scientific objectives. IEEE Trans Geosci Remote Sens., 2, 598–615.

    Google Scholar 

  • Deuzé, J.L., F.-M. Breon, P.Y. Dechamps, C. Devaux, M. Herman, A. Podaire and J.L. Roujean, 1993, Analysis of the POLDER (POLarization and Directionnality of Earth’s Reflectances) Airborne Instrument Observations over Land Surfaces. Remote Sens. Environ., 45, 137–154.

    Google Scholar 

  • Dinter, T., W. von Hoyningen-Huene, J.P. Burrows, A. Kokhanovsky, E. Bierwirth, M. Wendisch, D. Müller, R. Kahn, and M. Diouri, 2009. Retrieval of aerosol optical thickness for desert conditions using MERIS observations during SAMUM campaign. Tellus 61B (2009), 220–237.

    Google Scholar 

  • Dubovik, O., A. Smirnov, B.N. Holben, M.D. King, Y.J. Kaufman, T.F. Eck, and I. Slutsker, 2000, Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky-radiance measurements. J. Geophys. Res, 105, 9791–9806.

    Google Scholar 

  • Dubovik, O., B.N. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Tanré and I. Slutsker, 2002, Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. J. Atmos. Sci 59, 590–698.

    Google Scholar 

  • Dubovik O., A. Sinyuk, T. Lapyonok, B.N. Holben, M. Mishchenko, P. Yang, T.F. Eck, H. Volten, O. Munoz, B. Veihelmann, W.J. van der Zande, J.-F. Leon, M. Sorokin and I. Slutsker, 2006, Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619.

    Google Scholar 

  • Eck, T.F., B.N. Holben, J.S. Reid, O. Dubovik, A. Smirnov, N.T. O’Neill, I. Slutsker, and S. Kinne, 1999, Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosol. J. Geophys. Res., 104, 31 333–31 350.

    Google Scholar 

  • Engel-Cox, J.A., C.H. Holloman, B.W. Coutant and R.M. Hoff, 2004, Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmos. Environ., 38, 2495–2509.

    Google Scholar 

  • Engel-Cox, J.A., R.M. Hoff, R. Rogers, F. Dimmick, A.C. Rush, J.J. Szykman, J. Al-Saadi, D.A. Chu, E.R. Zell, 2006, Integrating lidar and satellite optical depth with ambient monitoring for 3-D dimensional particulate characterisation. Atmos. Environ., 40, 8056–8067.

    Google Scholar 

  • Fernald, F.G., B.M. Herman and J.A. Reagan, 1972, Determination of aerosol height distributions with lidar. J. Appl. Meteorol., 11, 482–489.

    Google Scholar 

  • Flowerdew R.J., and J.D. Haigh, 1995, An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers. Geophys. Res. Lett., 23, 1693–1696.

    Google Scholar 

  • Grey, W.M.F., P.R.J. North, S.O. Los and R.M. Mitchell, 2006, Aerosol optical depth and land surface reflectance from multi-angle AATSR measurements: Global validation and inter-sensor comparisons. IEEE Trans. Geosci. Remote Sens., 44, 2184–2197.

    Google Scholar 

  • Griggs, M., 1975, Measurements of atmospheric aerosol optical thickness over water using ERS-1 data. J. Air Pollut. Conlrol. Assoc., 25, 622–626.

    Google Scholar 

  • Hasekamp, O.P., and J. Landgraf, 2005, Retrieval of aerosol properties over the ocean from multispectral single-viewing-angle measurements of intensity and polarization: Retrieval approach, information content, and sensitivity study. J. Geophys. Res., 110, D20207, doi:10.1029/2005JD006212.

    Google Scholar 

  • Herman M., J.-L. Deuzé, A. Marchand, B. Roger, P. Lallart (2005), Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model, J. Geophys. Res., 110, D10S02, doi:10.1029/2004JD004798.

    Google Scholar 

  • Hess, M., P. Koepke and I. Schult, 1998, Optical properties of aerosols and clouds : The software package OPAC. Bull. Am. Met. Soc., 79, 831–844.

    Google Scholar 

  • Höller, R., P. Garnesson, C. Nagl, and T. Holzer-Popp, 2007, Using satellite aerosol products for monitoring national and regional air quality in Austria. Proc. ‘Envisat Symposium 2007’, Montreux, Switzerland, 23–27 April 2007 (ESA SP-636).

    Google Scholar 

  • Holben, B., T. Eck, I. Slutsker, D. Tanre, J. Buis, E. Vermote, J. Reagan, Y. Kaufman, T. Nakajima, F. Lavenau, I. Jankowiak and A.Smirnov, 1998, AERONET, a federated instrument network and data-archive for aerosol characterization. Rem. Sens. Environ., 66, 1–66.

    Google Scholar 

  • Holben, B.N., D. Tanré, A. Smirnov, T.F. Eck, I. Slutsker, N. Abuhassan, W.W. Newcomb, J.S. Schafer, B. Chatenet, F. Lavenu, Y.J. Kaufman, J.V. de Castle, A. Setzer, B. Markham, D. Clark, R. Froin, R. Halthore, A. Karnieli, N.T. O’Neill, C. Pietras, R.T. Pinker, K. Voss and G. Zibordi, 2001, An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12.067–12.097.

    Google Scholar 

  • Holzer-Popp, T., M. Schroedter and G. Gesell, 2002, Retrieving aerosol optical depth and type in the boundary layer over land and ocean from simultaneous GOME spectrometer and ATSR-2 radiometer measurements, 1, Method description. J. Geophys. Res., 107, 4578, doi:10.1029/2001JD002013.

    Google Scholar 

  • Hunt W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, C. Weimer, 2009, CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 1214–1228, doi: 10.1175/2008JTECHA1221.1.

    Google Scholar 

  • Hutchison, K.D., 2003, Applications of MODIS satellite data and products for monitoring air quality in the state of Texas. Atmos. Environ., 37, 2403–2412.

    Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (editors), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996 pp.

    Google Scholar 

  • Ichoku, C., L.A. Remer and T.F. Eck, 2005, Quantitative evaluation and intercomparison of morning and afternoon Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol measurements from Terra and Aqua. J. Geophys. Res., 110, D10S03, doi:10.1029/2004JD004987.

    Google Scholar 

  • Kacenelenbogen, M., J.-F. Léon, I. Chiapello, and D. Tanré, 2006, Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data. Atmos. Chem. Phys., 6, 4843–4849.

    Google Scholar 

  • Kahn, R. A., W.-H. Li, C. Moroney, D. J. Diner, J. V. Martonchik, and E. Fishbein, 2007, Aerosol source plume physical characteristics from space-based multiangle imaging. J. Geophys. Res., 112, D11205, doi:10.1029/2006JD007647.

    Google Scholar 

  • Kahn, R.A., D.L. Nelson, M.J. Garay, R.C. Levy, M.A. Bull, D.J. Diner, J.V. Martonchik, S.R. Paradise, E.G. Hansen and L.A. Remer, 2009, MISR Aerosol Product Attributes and Statistical Comparisons With MODIS. IEEE Trans. On Geosc. and Remote Sensing, 47, 4095–4114.

    Google Scholar 

  • Katsev, I.L., A.S. Prikhach, E.P. Zege, A.P. Ivanov and A.A. Kokhanovsky, 2009, Iterative procedure for retrieval of spectral optical thickness and surface reflectance from satellite data using fast radiative transfer code and its application to MERIS measurements, in: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 101–132.

    Google Scholar 

  • Kaufman, Y., A. Smirnov, B. Holben and O. Dubovik, 2001, Baseline maritime aerosol: methodology to derive the optical thickness and scattering properties. Geophys. Res. Letters, 28, 3251–3254.

    Google Scholar 

  • Kaufman, Y.J, D. Tanré and O. Boucher, 2002, A satellite view of aerosols in the climate system. Nature 419, 215–223.

    Google Scholar 

  • Kinne, S., 2009, Remote Sensing Data Combinations – Superior Global Maps for Aerosol Optical Depth, in: A.A. Kokhanovsky and G. de Leeuw (editors) Satellite Aerosol Remote Sensing Over Land, Springer, Berlin, 361–381.

    Google Scholar 

  • Kinne, S., M. Schulz, C. Textor, S. Guibert, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, D. Koch, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura and X. Tie, An AeroCom initial assessment – optical properties in aerosol component modules of global models. ACP, 6, 1–22, 2006.

    Google Scholar 

  • Klett, J.D., 1985, Lidar inversion with variable backscatter/extinction ratios. Applied Optics, 24, 1638–1643.

    Google Scholar 

  • Koepke, P., 1984, Effective reflectance of oceanic whitecaps. Appl. Opt., 23, 1816–1824.

    Google Scholar 

  • Kokhanovsky, A.A., and G. de Leeuw, 2009, Satellite Aerosol Remote Sensing Over Land. Springer, Berlin.

    Google Scholar 

  • Kokhanovsky, A.A., F.-M. Breon, A. Cacciari, E. Carboni, D. Diner, W. Di Nicolantonio, R.G. Grainger, W.M.F. Grey, R. Höller, K.-H. Lee, Z. Li, P.R.J. North, A.M. Sayer, G.E. Thomas and W. von Hoyningen-Huene, 2007, Aerosol remote sensing over land: A comparison of satellite retrievals using different algorithms and instruments. Atmospheric Research, 85, 372–394.

    Google Scholar 

  • Kokhanovsky, A.A., R. L. Curier, Y. Bennouna, R. Schoemaker, G. de Leeuw, P.R.J. North, W. M. F. Grey, K.-H. Lee, 2009, The inter-comparison of AATSR dual view aerosol optical thickness retrievals with results from various algorithms and instruments, Int. J. Remote Sensing, 30: 17, 4525–4537, 10.1080/01431160802578012.

    Google Scholar 

  • Koren, I., L.A. Remer, Y.J. Kaufman, Y. Rudich and J.V. Martins, 2007, On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, doi:10.1029/2007GL029253, 2007.

    Google Scholar 

  • Lee, K. H., Z. Li, Y.J. Kim and A.A. Kokhanovsky, 2009, Aerosol monitoring from satellite observations: a history of three decades. In: Y.J. Kim, U. Platt, M.B. Gu and H. Iwahashi (Editors). Atmospheric and Biological Environmental Monitoring, Berlin: Springer, 13–38.

    Google Scholar 

  • Lenoble, J., M. Herman, J. Deuzé, B. LaFrance, R. Santer and D. Tanré, 2007, A successive order of scattering code for solving the vector equation of transfer in the Earth’s atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transf., 1007, 479–507.

    Google Scholar 

  • Levy, R.C., L.A. Remer and O. Dubovik, 2007a, Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res., 112, D13210, doi:10.1029/2006JD007815.

    Google Scholar 

  • Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote and Y.J. Kaufman, 2007b, Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res., 112, D13211, doi:10.1029/2006JD007811.

    Google Scholar 

  • Liu, L., and M.I. Mishchenko, 2008, Toward unified satellite climatology of aerosol properties: direct comparisons of advanced level 2 aerosol products. J. Quant. Spectrosc. Radiat. Transf., 109, 2376–2385.

    Google Scholar 

  • Liu Z., M.A. Vaughan, D.M. Winker, C.A. Hostetler, L.R. Poole, D.L. Hlavka, W.D. Hart and M.J. McGill, 2004, Use of Probability Distribution Functions for Discriminating Between Cloud and Aerosol in Lidar Backscatter Data. J. Geophys. Res., 109, doi:10.1029/2004JD004732.

  • Liu Z., A.H. Omar, Y. Hu, M.A. Vaughan, D.M. Winker, L.R. Poole and T.A. Kovacs, 2005, CALIOP Algorithm Theoretical Basis Document Part 4: Scene Classification Algorithms. NASA-CNES document PC-SCI-203.

    Google Scholar 

  • Liu Z., M. Vaughan, D. Winker, C. Kittaka, B. Getzewitch, R. Kuehn, A. Omar, K. Powell, C. Trepte, and C. Hostetler, 2009, The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance, J. Atmos. Oceanic Technol., 26, 1198–1213.

    Google Scholar 

  • Maignan, F., F.-M. Breòn and R. Lacaze, 2004, Bidirectional reflectance of Earth targets: valuation of analytical models using a large set of spaceborne measurements with emphasis on the Hot Spot. Remote Sens Environ., 90, 210–220.

    Google Scholar 

  • McCormick, M.P., P. Hamill, P.J. Pepin, W.P. Chu, T.J. Swissler and L.R. McMaster, 1979, Satellite studies of the Stratospheric aerosol. Bull. American Meteorol. Soc., 60, 1038–1046.

    Google Scholar 

  • Mekler, Y., H. Quenzel, G. Ohring and I. Marcus, 1977, Relative atmospheric aerosol content from ERS observations. J. Geophys. Res., 82, 967–972.

    Google Scholar 

  • Mercado, L.M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild and P.M. Cox, 2009, Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017. doi:10.1038/nature07949

    Google Scholar 

  • Mie, G., 1908, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys., 25, 377–445.

    Google Scholar 

  • Mishchenko, M.I., I.V. Geogdzhayev, W.B. Rossow, B. Cairns, B.E. Carlson, A.A. Lacis, L. Liu and L.D. Travis, 2007, Long-term satellite record reveals likely recent aerosol trend. Science 315 (5818), 1543. DOI: 10.1126/science.1136709

    Google Scholar 

  • Myhre, G., F. Stordal, M. Johnsrud, A. Ignatov, M.I. Mishchenko, I.V. Geogdzhayev, D. Tanré, J.L. Deuzé, P. Goloub, T. Nakajima, A. Higurashi, O. Torres and B.N. Holben, 2004, Intercomparison of satellite retrieved aerosol optical depth over ocean. J. Atmos. Sci., 61, 499–513.

    Google Scholar 

  • Myhre, G., F. Stordal, M. Johnsrud, D.J. Diner, I.V. Geogdzhayev, J.M. Haywood, B.N. Holben, T. Holzer-Popp, A. Ignatov, R.A. Kahn, Y.J. Kaufman, N. Loeb, J.V. Martonchik, M.I. Mishchenko, N.R. Nalli, L.A. Remer, M. Schroedter-Homscheidt, D. Tanré, O. Torres, and M. Wang, 2005, Intercomparison of satellite retrieved aerosol optical depth over ocean during the period September 1997 to December 2000. Atmos. Chem. Phys., 5, 1697–1719.

    Google Scholar 

  • Nadal, F., and F.-M. Bréon, 1999, Parametrisation of surface polarised reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens., 37, 1709–1718.

    Google Scholar 

  • North, P.R.J., C. Brockmann, J. Fischer, L. Gomez-Chova, W. Grey, A. Heckel, J. Moreno, R. Preusker and P. Regner, 2008, MERIS/AATSR synergy algorithms for cloud screening, aerosol retrieval and atmospheric correction. in Proc. 2nd MERIS/AATSR User Workshop, ESRIN, Frascati, 22- 26 September 2008. (CD-ROM), ESA Publications Division, European Space Agency, Noordwijk, The Netherlands.

    Google Scholar 

  • Omar, A.H., J.-G. Won, S.-C. Yoon, O.D. David, M. Winker and M.P. McCormick, 2004, Development of global aerosol models using cluster analysis of AERONET measurements. J. Geophys. Res., 110, D10S14, doi:10.1029/2004JD004874.

    Google Scholar 

  • Omar A. H., D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Liu, Y. Hu, C. T. Trepte, R. R. Rogers, R. A. Ferrare, K.-P. Lee, R. E. Kuehn, and C. A. Hosteler, 2009, The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol., 26, 1994–2014, DOI: 10.1175/2008JTECHA1221.1.

    Google Scholar 

  • Pal, S.R., W. Steinbrecht and A.I. Carswell, 1992, Automated method for lidar determination of cloud-base height and vertical extent. Applied Optics, 31, 1488–1494.

    Google Scholar 

  • Platt, C.M.R., 1973, Lidar and radiometer observations of cirrus clouds. J. Atmos. Sci., 30, 1191–1204.

    Google Scholar 

  • Powell K. A., C. A. Hostetler, Z. Liu, M. A. Vaughan, R. E. Kuehn, W. H. Hunt, K.P. Lee, C. R. Trepte, R. R. Rogers, S. A. Young and D. M. Winker, 2009, CALIPSO lidar calibration algorithms Part I: Night-time 532-nm parallel channel and 532-nm perpendicular channel. J. Atmos. Oceanic Technol., 26, 2015–2033, doi: 10.1175/2008JTECHA1221.1.

    Google Scholar 

  • Quaas J., O. Boucher, N. Bellouin and S. Kinne, 2008, Satellite based estimate of the direct and indirect aerosol climate forcing, J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.

    Google Scholar 

  • Reagan J. A., X. Wang, and M. J. Osborn, 2002, Spaceborne lidar calibration from cirrus and molecular backscatter returns. IEEE Trans. Geosci. Remote Sens., 40, 2285–2290.

    Google Scholar 

  • Reid, J.S., S.J. Piketh, R. Kahn, R.T. Bruintjes and B.N. Holben (Editors), 2005, A Summary of First Year Activities of the United Arab Emirates Unified Aerosol Experiment: UAE2. NRL Report Nr. NRL/MR/7534–05-8899.

    Google Scholar 

  • Remer, L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V. Martins, R.R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote and B.N. Holben, 2005, The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

    Google Scholar 

  • Robles Gonzalez, C., 2003, Retrieval of Aerosol Properties using ATSR-2 Observations and their Interpretation. PhD thesis, University of Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Robles-Gonzalez, C., J.P. Veefkind and G. de Leeuw, 2000, Mean aerosol optical depth over Europe in August 1997 derived from ATSR-2 data. Geophys. Res. Lett. 27, 955–959.

    Google Scholar 

  • Robles-Gonzalez, C., G. de Leeuw, R. Decae, J. Kusmierczyk-Michulec, and P. Stammes, 2006, Aerosol properties over the Indian Ocean Experiment (INDOEX) campaign area retrieved from ATSR-2. J. Geophys. Res., 111, D15205, doi:10.1029/2005JD006184.

    Google Scholar 

  • Robles-Gonzalez, C., and G. de Leeuw, 2008, Aerosol properties over the SAFARI-2000 area retrieved from ATSR-2. J. Geophys. Res., 113, D05206, doi:10.1029/2007JD008636.

    Google Scholar 

  • Rossow, W., A. Walker and C. Garder, 1993, Comparison of ISCCP and other cloud amounts, J. Climate, 6, 2394–2418.

    Google Scholar 

  • Santer, R., V. Carrere, P. Dubuisson and J.-C. Roger, 1999, Atmospheric corrections over land for MERIS. Int. J. of Rem. Sens., 20, 1819–1840.

    Google Scholar 

  • Santer, R, Carrere, V., Dessailly, D., Dubuisson, P., and Roger, J.-C., 2000: MERIS Algorithm theoretical basis document, ATBD 2.15, Atmospheric corrections over land.

    Google Scholar 

  • Schaaf, C., F. Gao, A. Strahler, W. Lucht, X. Li, T. Trang, N. Strucknell, X. Zhang, Y. Jin, J.-P. Mueller, P. Lewis, M. Barnsley, P. Hobson, M. Disney, G. Roberts, M. Dunderdale, R. D’Entremont, B. Hu, S. Liang, J. Privette and D. Roy, 2002, First oberservational BRDF, albedo and nadir reflectance from MODIS. Remote Sens. Environ., 83, 135–148.

    Google Scholar 

  • Schaap, M., K. Muller and H.M. ten Brink, 2002, Constructing the European aerosol nitrate concentration field from quality analysed data. Atmos. Environ., 36, 1323–1335.

    Google Scholar 

  • Schaap, M., R.M.A. Timmermans, R.B.A Koelemeijer, G. de Leeuw and P.J.H. Builtjes, 2008, Evaluation of MODIS aerosol optical thickness over Europe using sun photometer observations. Atmos. Environ., 42, 2187–2197, doi:10.1016/j.atmosenv.2007.11.044.

    Google Scholar 

  • Schulz M., C. Textor, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, F. Dentener, S. Guibert, I.S.A. Isaksen, T. Iversen, D. Koch, A. Kirkevag, X. Liu, V. Montenaro, G. Myhre, J.E. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier and T. Takemura, 2006, Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. ACP, 6, 5225–5346.

    Google Scholar 

  • Seinfeld, J.H., and S.N. Pandis, 1998, Atmospheric Chemistry and Physics. Wiley.

    Google Scholar 

  • Silva, A.M., M.L. Bugalho, M.J. Costa, W.V. Hoyningen-Huene, T. Schmidt, J. Heintzenberg, S. Henning, 2002, Aerosol optical properties from columnar data during the second Aerosol Characterization Experiment an the south coast of Portugal. J. Geophys. Res., 107, doi: 10.1029/2002JD002196.

    Google Scholar 

  • Smirnov, A., B.N. Holben, I. Slutsker, D. M. Giles, C. R. McClain, T.F. Eck, S.M. Sakerin, A. Macke, P. Croot, G. Zibordi, P.K. Quinn, J. Sciare, S. Kinne, M. Harvey, T.J. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J.I. Goes, N.B. Nelson, P. Larouche, V.F. Radionov, P. Goloub, K. Krishna Moorthy, R. Matarrese, E.J. Robertson, and F. Jourdin, 2009, Maritime Aerosol Network as a component of Aerosol Robotic Network. J. Geophys. Res., 114, D06204, doi:10.1029/2008JD011257.

    Google Scholar 

  • Sogacheva, L., P. Kolmonen, L. Curier, G. de Leeuw, A. Kokhanovsky, 2009, Combined AATSR/MERIS algorithm AMARA for aerosol optical depth retrieval over ocean. Proceedings of OceanObs’09, 21–25 September 2009, Venice, Italy.

    Google Scholar 

  • Stammes, P., 2001, Spectral radiance modelling in the UV-Visible range. in: W.L. Smith and Y.M. Timofeyev (editors), Current problems in Atmospheric Radiation, A. Deepak Publication, Hampton, VA, pp. 385–388.

    Google Scholar 

  • Stowe, L.L., H. Jacobowitz, G. Ohring, K.R. Knapp and N.R. Nalli, 2002, The Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmosphere (PATMOS) climate dataset: Initial analyses and evaluations. J. Clim., 15, 1243–1260.

    Google Scholar 

  • Thomas, G.E., C.A. Poulsen, R. L. Curier, G. de Leeuw, S. H. Marsh, E. Carboni, R. G. Grainger and R. Siddans, 2007, Comparison of AATSR and SEVIRI aerosol retrievals over the Northern Adriatic. QJRM, 133, 85–95, doi: 10.1002/qj.126.

    Google Scholar 

  • Torres, O., P.K. Bhartia, J.R. Herman and Z. Ahmad, 1998, Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation. Theoretical Basis. J. Geophys. Res., 103, 17099–17110.

    Google Scholar 

  • Torres, O., P.K. Bhartia, J.R. Herman, A. Sinyuk and B.N. Holben, 2002, A long term record of aerosol optical thickness from TOMS observations and comparison to AERONET measurements. J. Atm. Sci.,59, 398–413.

    Google Scholar 

  • Torres, O., A. Tanskanen, B. Veihelmann, C. Ahn, R. Braak, P.K. Bhartia, J.P. Veefkind, and P.F. Levelt, 2007, Aerosols and Surface UV Products from OMI Observations: An Overview. J. Geophys. Res., 112, D24S47, doi:10.1029/2007JD008809.

    Google Scholar 

  • Vaughan M.A., D. M. Winker, and C.A. Hostetler, 2002, SIBYL: a Selective Iterated Boundary Location Algorithm for Finding Cloud and Aerosol Layers in CALIPSO Lidar Data. In: L. R. Bissonnette, G. Roy and G. Vallée (editors), Lidar Remote Sensing in Atmospheric and Earth Sciences, Defence R&D Canada – Valcartier, Québec, Canada, pp. 791–794.

    Google Scholar 

  • Vaughan M.A., D.M. Winker and K.A. Powell, 2005, CALIOP Algorithm Theoretical Basis Document Part 3: Feature Detection and Layer Properties Algorithms. NASA-CNES document PC-SCI-203.

    Google Scholar 

  • Vaughan M., K. Powell, R. E. Kuehn, S. Young, D. M. Winker, C. A. Hostetler, W. H. Hunt, Z. Liu, M. J. McGill and B. J. Getzewitch, 2009, Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 2034–2050, DOI: 10.1175/2008JTECHA1221.1.

    Google Scholar 

  • Veefkind, J.P. and G. de Leeuw, 1998, A new algorithm to determine the spectral aerosol optical depth from satellite radiometer measurements. J. of Aerosol Sciences, 29, 1237–1248.

    Google Scholar 

  • Veefkind, J.P., G. de Leeuw and P.A. Durkee, 1998, Retrieval of aerosol optical depth over land using two-angle view satellite radiometry during TARFOX. Geophys. Res. Lett. 25, 3135–3138.

    Google Scholar 

  • Veefkind, J.P., G. de Leeuw, P. Stammes and R.B.A. Koelemeijer, 2000, Regional distribution of aerosol over land derived from ATSR-2 and GOME. Remote sens Environ., 74,377–386.

    Google Scholar 

  • Veihelmann, B., P.F. Levelt, P. Stammes and J.P. Veefkind, 2007, Aerosol Information Content in OMI Spectral Reflectance Measurements. Atmos. Chem. Phys., 7, 3115–3127.

    Google Scholar 

  • Vermeulen, A., C. Devaux and M. Herman, 2000, Retrieval of the scattering and microphysical properties of aerosols from ground-based optical measurements including polarization. I. Method. Appl. Opt., 39, 6207–6220.

    Google Scholar 

  • Verver, G.H.L., J.S. Henzing, G. de Leeuw, C. Robles Gonzalez and P.F.J. van Velthoven, 2002, Aerosol retrieval and assimilation (ARIA). Final report Phase 1, NUSP-2, 02-09, KNMI-publicatie: 200.

    Google Scholar 

  • Volten, H., O. Munoz, E. Rol, J.F. de Haan, W. Vassen, J.W. Hovenier, K. Muinonen and T. Nousiainen, 2001, Scattering matrices of mineral aerosol particles at 441.6 and 632.8 nm. J. Geophys. Res., 106, 17375–17401.

    Google Scholar 

  • von Hoyningen-Huene, W., and P. Posse, 1997, Non-sphericity of aerosol particles and their contribution to radiative forcing. J.Quant. Spectr. Rad. Trans. 57, 651–668.

    Google Scholar 

  • von Hoyningen-Huene, W., K. Wenzel and S. Schienbein, 1999a, Radiative properties of desert dust and its effect on radiative balance. J. Aeros. Sci., 30, 489–502.

    Google Scholar 

  • von Hoyningen-Huene, W., T. Schmidt, S. Schienbein, A.K. Chan and J.T. Lim, 1999b, Climate relevant aerosol parameters of South-East Asian forest fire haze. Atm. Env., 33, 3183–3190.

    Google Scholar 

  • von Hoyningen-Huene, W., M. Freitag and J.B. Burrows, 2003, Retrieval of aerosol optical thickness over land surfaces from top-of-atmosphere radiance. J. Geophys. Res., 108, 4260. doi:10.1029/2001JD002018.

    Google Scholar 

  • von Hoyningen-Huene, W., A.A. Kokhanovsky, J.B. Burrows, V. Bruniquel-Pinel, P. Regner and F. Baret, 2006, Simultaneous determination of aerosol- and surface characteristics from top-of-atmosphere reflectance using MERIS on board ENVISAT. Adv Space Res., 37, 2172–2177.

    Google Scholar 

  • von Hoyningen-Huene, W., A.A. Kokhanovsky and J.P. Burrows, 2008, Retrieval of Particulate Matter from MERIS Observations. In: Y.J. Kim and U. Platt, (editors), Advanced Environmental Monitoring. Springer, Berlin, pp. 190–202.

    Google Scholar 

  • Wang, M., and H.R. Gordon, 1994, Radiance reflected from the ocean-atmosphere system: synthesis from the individual components of the aerosol size distribution. Appl. Opt., 33, 7088–7095.

    Google Scholar 

  • Wang J. and S.A. Christopher, 2003, Intercomparison between satellite-derived aerosol optical thickness and PM25 mass: implications for air quality studies. Geophys. Res. Lett., 30, 2095, doi:10.1029/2003GL018174.

    Google Scholar 

  • Winker, D.M., R.H. Couch and M.P. McCormick, 1996, An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84, 164–180.

    Google Scholar 

  • Winker D.M., J.R. Pelon and M.P. McCormick, 2003, The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds, Proc. of SPIE, 4893, 1–11.

    Google Scholar 

  • Winker D.M., W.H. Hunt and M.J. McGill, 2007, Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.

    Google Scholar 

  • Winker, D.M., M.A. Vaughan, A.H. Omar, Y. Hu, K.A. Powell, Z. Liu, W.H. Hunt, and S.A. Young, 2009., Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Oceanic Technol., 26, 2310–2323, doi: 10.1175/2008JTECHA1221.1.

    Google Scholar 

  • Young, S.A., 1995, Lidar analysis of lidar backscatter profiles in optically thin clouds. Appl. Opt., 34, 7019–7031.

    Google Scholar 

  • Young S.A., D.M. Winker, V. Noel, M.A. Vaughan, Y.Hu, R.E. Kuehn, 2005, Algorithm Theoretical Basis Document Part 5: Extinction Retrieval and Particle Property Algorithms, NASA-CNES document PC-SCI-203.

    Google Scholar 

  • Young S. and M. Vaughan, 2009, The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: algorithm description. J. Atmos. Oceanic Technol., 26, 1105–1119, DOI: 10.1175/2008JTECHA1221.1.

    Google Scholar 

  • Zwally, H.J., B. Schutz, W. Abdalati, J. Abshire, C. Bentley, A. Brenner, J. Bufton, J. Dezio, D. Hancock, D. Harding, T. Herring, B. Minster, K. Quinn, S. Palm, J. Spinhirne and R. Thomas, 2002, ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J of Geodynamics 34, 405–445.

    Google Scholar 

Download references

Acknowledgements

The work described in this Chapter was supported by EU-FP6 projects ACCENT, EUCAARI and GEMS, EU-FP7 projects MEGAPOLI and MACC. We gratefully acknowledge the efforts of many global modelling groups contributing to AeroCom exercises and the support of many remote sensing groups, in particular the AERONET group by providing input on site assessments for data quality and regional representation We thank the ICARE thematic centre for providing an easy access to the MODIS and POLDER data and products used in this paper.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Leeuw, G. et al. (2011). Retrieval of Aerosol Properties. In: Burrows, J., Borrell, P., Platt, U. (eds) The Remote Sensing of Tropospheric Composition from Space. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14791-3_6

Download citation

Publish with us

Policies and ethics