Skip to main content

The Use of UV, Visible and Near IR Solar Back Scattered Radiation to Determine Trace Gases

Part of the Physics of Earth and Space Environments book series (EARTH)

Abstract

Satellite remote sensing in the near-IR, visible and UV spectral range makes use of absorption and emission processes of electromagnetic radiation corresponding to electronic transitions, combined with simultaneous rotational-vibrational molecular transitions. One important difference compared to atmospheric observations in the microwave and thermal IR spectral range is that, usually thermal emission can be neglected at short wavelengths (there might, however, be emissions from, for example, excited gases in the high atmosphere). Thus the observed spectral signatures can be directly related to absorption spectra of atmospheric constituents. The neglect of emission terms makes the spectral analysis in the UV/vis spectral range usually reasonably straight forward. Another important and related advantage is that from satellite observations in the UV/vis spectral region, information from all atmospheric height layers (including the near surface layers) can be obtained. This makes UV/vis satellite observations a powerful tool for the monitoring of atmospheric pollution and for the characterisation and quantification of emission sources which are usually located close to the ground. It should, however, also be noted that, in contrast to observations in the microwave or thermal IR, usually little or no information on the vertical distribution of a trace gas is obtained.

Keywords

  • Surface Albedo
  • Light Path
  • Column Density
  • Satellite Instrument
  • Fraunhofer Line

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-14791-3_2
  • Chapter length: 55 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-14791-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16

References

  • Acarreta, J.R., De Haan, J.F., and Stammes, P., 2004, Cloud pressure retrieval using the O2–O2 absorption band at 477 nm, J. Geophys. Res., doi:10.1029/2003JD003915.

    Google Scholar 

  • Aliwell, S.R., M. Van Roozendael, P. V. Johnston, A. Richter, T. Wagner, D. W. Arlander, J. P. Burrows, D. J. Fish, R. L. Jones, K. K. Tornkvist, J.-C. Lambert, K. Pfeilsticker, and I. Pundt, 2002, Analysis for BrO in zenith-sky spectra; An intercomparison exercise for analysis improvement, J. Geophys. Res., doi:10.1029/2001JD000329.

    Google Scholar 

  • Beirle, S., Kühl, S., Puķīte, J., and Wagner, T., 2010, Retrieval of tropospheric column densities of NO2 from combined SCIAMACHY nadir/limb measurements, Atmos. Meas. Tech., 3, 283–299, doi:10.5194/amt-3-283-2010, 2010.

    Google Scholar 

  • Bhartia, P.K., R.D. McPeters, C.L. Mateer, L.E. Flynn, and C. Wellemeyer, 1996, Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique, J. Geophys. Res., 101, 18793–18806.

    CrossRef  Google Scholar 

  • Boersma, K. F., Eskes, H. J., Brinksma, E.J., 2004, Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., Atmospheres, doi:10.1029/2003JD003962.

    Google Scholar 

  • Boersma, K. F., Eskes, H. J., Veefkind, J. P., Brinksma, E. J., van der A, R. J., Sneep, M., van den Oord, G. H. J., Levelt, P. F., Stammes, P., Gleason, J. F., Bucsela, E. J., 2007, Near-real time retrieval of tropospheric NO2 from OMI, Atmos. Chem. Phys., 7, 2103–2118.

    Google Scholar 

  • Boersma, K.F., D.J. Jacob, H.J. Eskes, R.W. Pinder, J. Wang, and R.J. van der A, 2008, Intercomparison of SCIAMACHY and OMI tropospheric NO2 columns: Observing the diurnal evolution of chemistry and emissions from space, J. Geophys. Res., 113(D16), 14.

    Google Scholar 

  • Bogumil, K., J. Orphal, T. Homann, S. Voigt, P.Spietz, O.C. Fleischmann, A. Vogel, M. Hartmann, H. Bovensmann, J. Frerik, and J.P. Burrows, 2003, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm Region, J. Photochem. Photobiol. A, 157, 167–184.

    CrossRef  Google Scholar 

  • Bovensmann, H., J.P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V.V. Rozanov, K. V. Chance, and A.H.P. Goede, 1999, SCIAMACHY - Mission objectives and measurement modes, J. Atmos. Sci., 56(2), 127–150.

    CrossRef  Google Scholar 

  • Bracher, A., M. Vountas, T. Dinter, J. P. Burrows, R. Röttgers, and I. Peeken, 2008, Quantitative observation of cyanobacteria and diatoms from space using PhytoDOAS on SCIAMACHY data, Biogeosciences Discuss., 5, 4559–4590.

    CrossRef  Google Scholar 

  • Brewer A.C., C.T. McElroy, and J.B. Kerr, 1973, Nitrogen dioxide concentrations in the atmosphere, Nature, 246, 129–133.

    CrossRef  Google Scholar 

  • Buchwitz, M., Rozaonv, V.V., Burrows, J. P., 2000, A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY ENVISAT-1 nadir radiances, J. Geophys. Res. - Atmospheres, 105(D12), 15231–15245.

    Google Scholar 

  • Burrows, J.P., K.V. Chance, P.J. Crutzen, H. van Dop, J.C. Geary, T.S. Johnson, G.W. Harris, I.S.A. Isaksen, G.K. Moortgat, C. Muller, D. Perner, U. Platt, J.-P. Pommereau and H. Rohde, 1988, SCIAMACHY – A European proposal for atmospheric remote sensing from the ESA polar platform, Max-Planck-Institute for Chemistry, Mainz, Germany.

    Google Scholar 

  • Burrows, J.P., E. Hölzle, A.P.H. Goede, H. Visser, W. Fricke, 1995, SCIAMACHY- Scanning imaging absorption spectrometer for atmospheric chartography, Acta Astronautica, 35(7), 445.

    CrossRef  Google Scholar 

  • Burrows, J.P., 1999, Current and future passive remote sensing techniques used to determine atmospheric constituents, in A. F. Bouwman (editor), Approaches to scaling trace gas fluxes in ecosystems, Elsevier Science B. V., Amsterdam.

    Google Scholar 

  • Burrows, J.P., Weber, M., Buchwitz, M., Rozanov, V., Ladstätter-Weißenmayer, A., Richter, A., DeBeek, R., Hoogen, R., Bramstedt, K., Eichmann, K.-U., Eisinger, M., Perner, D., 1999, The global ozone monitoring experiment (GOME): mission concept and first scientific results, J. Atmos. Sci., 56, 151–175.

    CrossRef  Google Scholar 

  • Bucsela, E. J., Celarier, E.A., Wenig, M.O., Gleason, J.F., Veefkind, J.P., Boersma K.F., Brinksma, E.J., 2006, Algorithm for NO2 vertical column retrieval from the ozone monitoring instrument, IEEE Transactions on Geoscience and Remote Sensing, 44(5), 1245–1258.

    CrossRef  Google Scholar 

  • Cox, C., Munk, W., 1954, Measurements of the roughness of the sea surface from photographs of the sun’s glitter, J. Opt. Soc. Am., 44, 838–850.

    CrossRef  Google Scholar 

  • Cox, C., Munk, W., 1956, Slopes of the sea surface deduced from photographs of sun glitter, Bull. Scripps Inst. Oceanography, 6(9), 401–488.

    Google Scholar 

  • Chance, K. V., Burrows, J.P., Perner, D., Schneider, W., 1997, Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible measurements in the nadir geometry: A potential method to retrieve tropospheric ozone, Journal of Quantitative Spectroscopy & Radiative Transfer, 57(4), 467–476.

    CrossRef  Google Scholar 

  • Chance, K., Kurosu, T.P., Sioris, C.E., 2005, Undersampling correction for array detector-based satellite spectrometers, Applied Optics, 44(7), 1296–1304.

    CrossRef  Google Scholar 

  • Delderfield, J., Llewellyn-Jones, D. T., Bernard, R., de Javel, Y., Williamson, E. J., Mason, I., Pick, D. R. and Barton, I. J., 1986, The along track scanning radiometer (ATSR) for ERS-1, Proc. SPIE, 589, 114–120.

    CrossRef  Google Scholar 

  • DeBeek, R., M. Vountas, V.V. Rozanov, A. Richter, and J.P. Burrows, 2001, The Ring effect in the cloudy atmosphere, Geophys. Res. Lett., 28, 721–772.

    CrossRef  Google Scholar 

  • Diner, D.J., J.C. Beckert, T.H. Reilly, C.J. Bruegge, J.E. Conel, R. Kahn, J.V. Martonchik, T.P. Ackerman, R. Davies, S.A.W. Gerstl, H.R. Gordon, J-P. Muller, R. Myneni, R.J. Sellers, B. Pinty, and M.M. Verstraete, 1998, Multi-angle Imaging SpectroRadiometer (MISR) description and experiment overview, IEEE Trans. Geosci. Rem. Sens., 36 (4), 1072–1087.

    CrossRef  Google Scholar 

  • ESA Publication Division (SP-1182), 1995, GOME, Global ozone monitoring experiment, users manual, edited by F. Bednarz, European Space Research and Technology Centre (ESTEC), Frascati, Italy.

    Google Scholar 

  • Eskes, H.J., and K.F. Boersma, 2003, Averaging kernels for DOAS total-column satellite retrievals, Atmos. Chem. Phys., 3, 1285–1291.

    CrossRef  Google Scholar 

  • EUMETSAT, GOME-2 Products Guide, 2005, http://www.eumetsat.int/en/area4/eps/product_guides/GOME-2/GOME2-PG.pdf.

  • Farman, J.C., B.G. Gardiner, and J.D. Shanklin, 1985, Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315, 207–210.

    CrossRef  Google Scholar 

  • Fish, D.J., and R.L. Jones, 1995, Rotational Raman-Scattering and the Ring Effect in Zenith-Sky Spectra, Geophys. Res. Lett., 22(7), 811–814.

    CrossRef  Google Scholar 

  • Fishman, J., and J.C. Larsen, 1987, Distribution of total ozone and stratospheric ozone in the tropics - implications for the distribution of tropospheric ozone, J. Geophys. Res., Atmospheres, 92(D6), 6627–6634.

    Google Scholar 

  • Frankenberg, C., U. Platt, and T. Wagner, 2005, Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT, Atmos. Chem. Phys., 5, 9–22.

    CrossRef  Google Scholar 

  • Frederick, J.E, R. P. Cebula, and D. F. Heath, 1986, Instrument characterization for the detection of long-term changes in stratospheric ozone: an analysis of the SBUV/2 radiometer, J. Atmos. Oceanic Technol., 3, 472–480.

    CrossRef  Google Scholar 

  • Grainger, J.F., and J. Ring, 1962, Anomalous Fraunhofer Line Profiles, Nature, 193(4817), 762.

    CrossRef  Google Scholar 

  • Hasekamp, O.P., and J. Landgraf, 2002, Tropospheric ozone information from satellite-based polarization measurements, J. Geophys. Res., Atmospheres, doi:10.1029/2001/JD001346.

    Google Scholar 

  • Heath, D. F., Mateer, C. L., and Kreuger, A.J., 1973, The Nimbus-4 BUV atmospheric Ozone experiment- Two Year’s operation, Pure Appl Geophys, 106–108, 1238–1253.

    CrossRef  Google Scholar 

  • Heath, D.F., A.J. Krueger, H.R. Roeder, and B.D. Henderson, 1975, The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G, Opt. Eng., 14, 323–331.

    CrossRef  Google Scholar 

  • Heath, D.F., Krueger, A.J., Park, H., 1978, The solar backscatter ultraviolet (SBUV) and total ozone mapping spectrometer (TOMS) experiment, in The Nimbus 7 User’s Guide, NASA Goddard Space Flight Centre, MD, 175–211.

    Google Scholar 

  • Hendrick, F., M. Van Roozendael, A. Kylling, A. Petritoli, A. Rozanov, S. Sanghavi, R. Schofield, C. von Friedeburg, T. Wagner, F. Wittrock, D. Fonteyn, and M. De Mazière, 2006, Intercomparison exercise between different radiative transfer models used for the interpretation of groundbased zenith-sky and multi-axis DOAS observations, Atmos. Chem. Phys., 6, 93–108.

    CrossRef  Google Scholar 

  • Henyey, L., and J. Greenstein, 1941, Diffuse radiation in the galaxy, Astrophys J., 93, 70–83.

    CrossRef  Google Scholar 

  • Hilsenrath, E., R.P. Cebula, M.T. Deland, K. Laamann, S. Taylor, C. Wellemeyer, and P.K. Bhartia, 1995, Calibration of the NOAA-11 Solar Backscatter Ultraviolet (SBUV/2) Ozone Data Set from 1989 to 1993 using In-Flight Calibration Data and SSBUV, J. Geophys. Res., 100, 1351–1366.

    CrossRef  Google Scholar 

  • Hoogen, R., V.V. Rozanov, J.P. Burrows, 1999, Ozone profiles from GOME satellite data: algorithm description and first validation, J. Geophys. Res., 104, 8263–8280.

    CrossRef  Google Scholar 

  • Hudson, R. D., and A. M. Thompson, 1998, Tropical tropospheric ozone from total ozone mapping spectrometer by a modified residual method, J. Geophys. Res., Atmospheres, 103(D17), 22129–22145.

    Google Scholar 

  • Jiang, Y. B., and Y. L. Yung, 1996, Concentrations of tropospheric ozone from 1979 to 1992 over tropical Pacific South America from TOMS data, Science, 272(5262), 714–716.

    CrossRef  Google Scholar 

  • Joiner, J., and P. K. Bhartia, 1995, The determination of cloud pressures from rotational Raman-scattering in satellite backscatter ultraviolet measurements, J. Geophys. Res. - Atmospheres, 100(D11), 23019–23026.

    Google Scholar 

  • Joiner, J., Bhartia, P.K., Cebula, R.P., Hilsenrath, E., McPeters, R.D., Park, H., 1995, Rotational Raman-Scattering (Ring Effect) in Satellite Backscatter ultraviolet measurements, Applied Optics, 34(21), 4513–4525.

    CrossRef  Google Scholar 

  • Joiner, J., and A.P. Vasilkov, 2006, First results from the OMI rotational Raman scattering cloud pressure algorithm, Geoscience and Remote Sensing, IEEE Transactions, 44, 5, 1272–1282.

    CrossRef  Google Scholar 

  • Kattawar, G.W., Young, A.T., Humphreys, T.J., 1981, Inelastic-scattering in planetary-atmospheres. 1. The ring effect, without Aerosols, Astrophys. J., 243(3), 1049–1057.

    CrossRef  Google Scholar 

  • Kirchhoff, G.R., 1859, Über die Fraunhoferschen Linien, Berichte der Königlichen Preußischen Akademie der Wissenschaften, 59, 662.

    Google Scholar 

  • Koelemeijer, R.B.A., J.F. de Haan, and P. Stammes, 2003, A database of spectral surface reflectivity in the range 335–772 nm derived from 5.5 years of GOME observations, J. Geophys. Res., doi:10.1029/2002JD002429.

    Google Scholar 

  • Koelemeijer, R.B.A., Stammes P., Hovenier J.W. and F.J. de Haan, 2010, A fast method for retrieval of cloud parameters using oxygen A-band measurements from the Global Ozone Monitoring Instrument, J. Geophys. Res., D, 106, 3475–3490.

    Google Scholar 

  • Komhyr, W. D., Grass, R. D., and Leonhard, R. K., 1989, Dobson spectrophotometer 83: A standard for total ozone measurements, 1962–1987, J. Geophys. Res., 94, 9847–9861.

    CrossRef  Google Scholar 

  • Krijger, J.M., M. van Weele, I. Aben, R. Frey, 2007, The effects of sensor resolution on the number of cloud-free observations from space, Atmos. Chem. Phys., 7, 2881–2891.

    CrossRef  Google Scholar 

  • Kuze, A., and K.V. Chance, 1994, Analysis of cloud top height and cloud coverage from satellites using the O2 A and B bands, J. Geophys. Res., 99(D7), 14481–14491.

    Google Scholar 

  • Leue, C., M. Wenig, T. Wagner, U. Platt, and B. Jähne, 2001, Quantitative analysis of NOx emissions from GOME satellite image sequences, J. Geophys. Res., 106, 5493–5505.

    CrossRef  Google Scholar 

  • Levelt P.F., and R. Noordhoek, 2002, OMI Algorithm Theoretical Basis Document Volume I: OMI Instrument, Level 0-1b Processor, Calibration & Operations, Tech. Rep. ATBD-OMI-01, Version 1.1.

    Google Scholar 

  • Liu, X., K. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, and M.J. Newchurch, 2005, Ozone profile and tropospheric ozone retrievals from the global ozone monitoring experiment: algorithm description and validation, J. Geophys. Res., doi:10.1029/2005JD006240.

    Google Scholar 

  • Martin, R. V., K. Chance, D. J. Jacob, T. P. Kurosu, R. J. D. Spurr, E. Bucsela, J. F. Gleason, P. I. Palmer, I. Bey, A. M. Fiore, Q. Li, R. M. Yantosca, and R. B. A. Koelemeijer, 2002, An improved retrieval of tropospheric nitrogen dioxide from GOME. J. Geophys. Res., 107(D20), 4437, doi:10.1029/2001JD001027.

    Google Scholar 

  • McPeters, R.D., S.M. Hollandsworth, L.E. Flynn, J.R. Hermans, and C.J. Seftor, 1996, Long-term ozone trends derived from the 16 year combined NIMBUS 7/Meteor 3 TOMS version 7 record, Geophys. Res. Lett., 23, 3699–3702.

    CrossRef  Google Scholar 

  • Meador, W.E., and Weaver, W.R., 1980, Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and new improvements, J. Atmos. Sci. 37, 630–643.

    CrossRef  Google Scholar 

  • Mie G, 1908, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, Vierte Folge, Band 25, No. 3, 377–445.

    Google Scholar 

  • Mishchenko, M.I., A.A., Lacis, L.D. Travis, 1994, Errors introduced by the neglect of polarization in radiative transfer calculations for Rayleigh scattering atmospheres, J. Quant. Spectrosc. Radiat. Transf., 51, 491–510.

    CrossRef  Google Scholar 

  • Müller, M. D., Kaifel, A.K., Weber, M., Tellmann, S., Burrows, J.P., Loyola, D., 2003, Ozone profile retrieval from Global Ozone Monitoring Experiment (GOME) data using a neural network approach (Neural Network Ozone Retrieval System (NNORSY)), J. Geophys. Res., Atmospheres, doi:10.1029/2002JD002784.

    Google Scholar 

  • Noël, S., Buchwitz, M., Burrows, J.P., 2004, First retrieval of global water vapour column amounts from SCIAMACHY measurements, Atmos Chem Phys, 4, 111–125.

    CrossRef  Google Scholar 

  • Noxon, J. F., 1975, Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy, Science, 189, 547.

    CrossRef  Google Scholar 

  • Noxon, J.F., Whipple Jr., E.C., and R.S. Hyde, 1979, Stratospheric NO 2.1. Observational method and behaviour at mid-latitude, J. Geophys. Res., 84, 5047–5065.

    Google Scholar 

  • Palmer, P.I., D.J. Jacob, K. Chance, R.V. Martin, R.J.D. Spurr, T. Kurosu, I. Bey, R. Yantosca, A. Fiore, and Q. Li, 2001, Air-mass factor formulation for differential optical absorption spectroscropy measurements from satellites and application to formaldehyde retrievals from GOME, J. Geophys. Res., 106, 17, 147–17,160.

    Google Scholar 

  • Park, H., D.F. Heath, and C.L. Mateer, 1986, Possible application of the Fraunhofer line filling in effect to cloud height measurements, Meteorological Optics, OSA Technical Digest Series, 70–81, Opt. Soc. Am., Washington, D. C.

    Google Scholar 

  • Perliski, L.M., and S. Solomon, 1993, On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy, J. Geophys. Res., 98, 10363–10374.

    CrossRef  Google Scholar 

  • Perner, D., D.H. Ehalt, H.W. Pätz, U. Platt, E.P. Röth, and A. Volz, 1976, OH-radicals in the lower troposphere, Geophys. Res. Lett., 3, 466–468.

    CrossRef  Google Scholar 

  • Perner, D. and U. Platt, 1979, Detection of nitrous acid in the atmosphere by differential optical absorption, Geophys. Res. Lett., 7, 1053–1056.

    CrossRef  Google Scholar 

  • Platt, U., D. Perner, and W. Pätz, 1979, Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption, J. Geophys. Res., 84, 6329–6335.

    CrossRef  Google Scholar 

  • Platt, U., 1994, Differential optical absorption spectroscopy (DOAS), in M. W. Sigrist (Ed.), Air Monitoring by Spectroscopic Techniques. Chemical Analysis Series, John Wiley, New York, 127.

    Google Scholar 

  • Platt, U., Marquard, L., Wagner, T., Perner, D., 1997, Corrections for zenith scattered light DOAS, Geophys, Res. Lett., 24(14), 1759–1762.

    CrossRef  Google Scholar 

  • Platt, U, and Stutz, J., 2008, Differential optical absorption spectroscopy: principles and applications, Springer, Heidelberg.

    Google Scholar 

  • Richter, A., Eisinger, E., Ladstätter-Weißenmayer, A., Burrows, J.P., 1999, DOAS Zenith sky observations: 2. Seasonal variation of BrO over Bremen (53°N) 1994–1995, J. Atmos. Chem., 32(1), 83–99.

    CrossRef  Google Scholar 

  • Richter, A., and J. P. Burrows, 2000, A multi wavelength approach for the retrieval of tropospheric NO2 from GOME measurements, in ERS-ENVISAT symposium, ESA publication SP-461, edited, Gothenburg.

    Google Scholar 

  • Richter, A., and J. P. Burrows, 2002, Tropospheric NO2 from GOME measurements, Adv Space Res 29(11), 1673–1683.

    CrossRef  Google Scholar 

  • Richter, A., Burrows, J. P., Nüß, H., Granier, C, Niemeier, U., 2005, Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437(7055), 129–132.

    CrossRef  Google Scholar 

  • Roscoe, H. K., Fish, D.J., Jones, R.L., 1996, Interpolation errors in UV-visible spectroscopy for stratospheric sensing: Implications for sensitivity, spectral resolution, and spectral range, Applied Optics, 35(3), 427–432.

    CrossRef  Google Scholar 

  • Rozanov, V.V., Kurosu, T., Burrows, J.P., 1998, Retrieval of atmospheric constituents in the UV-visible: A new quasi-analytical approach for the calculation of weighting functions, J Quant Spectrosc Radiat Transf, 60(2), 277–299.

    CrossRef  Google Scholar 

  • Rozanov, V.V., A.A. Kokhanovsky, 2004, Semianalytical cloud retrieval algorithm as applied to the cloud top altitude and the cloud geometrical thickness determination from top of atmosphere reflectance measurements in the oxygen absorption bands, J. Geophys. Res., doi: 10.1029/2003JD004104.

    Google Scholar 

  • Sanghavi, S., 2003, An efficient Mie theory implementation to investigate the influence of aerosols on radiative transfer, Diploma thesis, University of Heidelberg, Germany.

    Google Scholar 

  • Sarkissian, A., Roscoe, H. K., Fish, D., Van Roozendael, M., Gil, M., Chen, H. B., Wang, P., Pommereau, J.-P., and Lenoble, J., 1995, Ozone and NO2 air-mass factors for zenith-sky spectrometers: Intercomparison of calculations with different radiative transfer models, Geophys. Res. Lett., 22(9), 1113–1116.

    CrossRef  Google Scholar 

  • Schoeberl, M.R., Ziemke, J.R., Bojkov, B., Livesey, N., Duncan, B., Strahan, S., Froidevaux, L., Kulawik, S., Bhartia, P.K., Chandra, S., Levelt, P.F., Witte, J. C., Thompson, A.M., Cuevas, E., Redondas, A., Tarasick, D.W., Davies, J., Bodeker, G., Hansen, G., Johnson, B.J., Oltmans, S.J., Voemel, H., Allaart, M., Kelder, H., Newchurch, M., Godin-Beekmann, S., Ancellet, G., Claude, H., Andersen, S.B., Kyrö, E., Parrondos, M., Yela, M., Zablocki, G., Moore, D., Dier, H., von der Gathen, P., Viatte, P., Stübi, R., Calpini, B., Skrivankova, P., Dorokhov, V., De Backer, H., Schmidlin, F.J., Coetzee, G., Fujiwara, M., Thouret, V., Posny, F., Morris, G., Merrill, J., Leong, C.P., König-Langlo, G., Joseph, E., 2007, A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res. - Atmospheres, 112(D24), 21.

    Google Scholar 

  • Sierk, B., Richter, A., Rozanov, A., V. Savigny, C. Schmoltner, A.M. Buchwitz, M., Bovensmann, H., and J. P. Burrows, 2006, Retrieval and monitoring of atmospheric trace gas concentrations in nadir and limb geometry using the space-borne SCIAMACHY instrument, Environ Monit Assess, 120(1–3), 65–77.

    Google Scholar 

  • Sioris, C. E., Kurosu, T.P., Martin, R.V., Chance, K., 2004, Stratospheric and tropospheric NO2 observed by SCIAMACHY: first results, Trace Constituents in the Troposphere and Lower Stratosphere, 34(4), 780–785.

    Google Scholar 

  • Solomon, S., A. L. Schmeltekopf, and R. W. Sanders, 1987, On the interpretation of zenith sky absorption measurements, J. Geophys. Res., 92, 8311–8319.

    CrossRef  Google Scholar 

  • Slusser, J. R., K. Hammond, A. Kylling, K. Stamnes, L. Perliski, A. Dahlback, D. E. Anderson, and R. DeMajistre, 1996, Comparison of air mass computations. J. Geophys. Res., 101, 9315–9321.

    CrossRef  Google Scholar 

  • van Noije, T. P. C., Eskes, H.J., Dentener, F.J., Stevenson, D.S., Ellingsen, K., Schultz, M.G., Wild, O., Amann, M., Atherton, C.S., Bergmann, D.J., Bey, I., Boersma, K.F., Butler, T., Cofala, J., Drevet, J., Fiore, A.M., Gauss, M., Hauglustaine, D.A., Horowitz, L.W., Isaksen, I.S.A., Krol, M.C., Lamarque, J.-F., Lawrence, M.G., Martin, R.V., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M.J., Pyle, J.A., Richter, A., Rodriguez, J.M., Savage, N.H., Strahan, S.E., Sudo, K., Szopa, S., van Roozendael, M., 2006, Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000, Atmos Chem Phys, 6, 2943–2979.

    CrossRef  Google Scholar 

  • van de Hulst, H.C., 1981, Light scattering by small particles., New York, Dover, ISBN 0486642283.

    Google Scholar 

  • Van Roozendael, M., Loyola D., Spurr R., Balis D., Lambert J-C., Livschitz Y., Valks P., Ruppert T., Kenter P., Fayt C., Zehner C., 2006, Ten years of GOME/ERS-2 total ozone data – The new GOME data processor (GDP) version 4: 1. Algorithm description, J. Geophys. Res., 111, D14311, doi:10.1029/2005JD006375.

    CrossRef  Google Scholar 

  • Vasilkov, A. P., Joiner, J., Gleason, J., Bhartia, P.K., 2002, Ocean Raman scattering in satellite backscatter UV measurements, Geophys. Res. Lett., doi:10.1029/2002GL014955.

    Google Scholar 

  • Vountas, M., V.V. Rozanov, and J.P. Burrows, 1998, Ring effect: Impact of rotational Raman scattering on radiative transfer in Earth’s Atmosphere, J. Quant. Spec. Rad. Trans., 60(6), 943–961.

    CrossRef  Google Scholar 

  • Vountas, M., A. Richter, F. Wittrock, and J.P. Burrows, 2003, Inelastic scattering in ocean water and its impact on trace gas retrievals from satellite data, Atmos. Chem. Phys., 3, 1365–1375.

    CrossRef  Google Scholar 

  • Vountas, M., T. Dinter, A. Bracher, J. P. Burrows, and B. Sierk, 2007, Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS), Ocean Sci., 3, 429–440.

    CrossRef  Google Scholar 

  • Wagner, T., S. Beirle, M. Grzegorski, and U. Platt, 2007a, Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS) in the red spectral range, Atmos. Chem. Phys., 7, 69–79.

    CrossRef  Google Scholar 

  • Wagner, T., J. P. Burrows, T. Deutschmann, B. Dix, C. von Friedeburg, U. Frieß, F. Hendrick, K.-P. Heue, H. Irie, H. Iwabuchi, Y. Kanaya, J. Keller, C. A. McLinden, H. Oetjen, E. Palazzi, A. Petritoli, U. Platt, O. Postylyakov, J. Pukite, A. Richter, M. van Roozendael, A. Rozanov, V. Rozanov, R. Sinreich, S. Sanghavi, F. Wittrock, 2007b, Comparison of Box-Air-Mass-Factors and radiances for multiple-axis differential optical absorption spectroscopy (MAX-DOAS) Geometries calculated from different UV/visible radiative transfer models, Atmos. Chem. Phys., 7, 1809–1833.

    CrossRef  Google Scholar 

  • Wendisch, M., and P. Yang, 2010, A Concise Introduction to Atmospheric Radiative Transfer, Wiley & Sons., ISBN: 978-3-527-40836-8.

    Google Scholar 

  • Yang, K., X. Liu, N.A. Krotkov, A.J. Krueger, and S. A. Carn, 2009, Estimating the altitude of volcanic sulfur dioxide plumes from space borne hyper-spectral UV measurements, Geophys. Res. Lett., doi:10.1029/2009GL038025.

    Google Scholar 

  • Ziemke, J.R., Chandra, S., Bhartia, P.K., 1998, Two new methods for deriving tropospheric column ozone from TOMS measurements: Assimilated UARS MLS/HALOE and convective-cloud differential techniques, J. Geophys. Res. - Atmospheres, 103(D17), 22115–22127.

    Google Scholar 

  • Ziemke, J. R., Chandra, S., Bhartia, P.K.,, 2001, Cloud slicing: A new technique to derive upper tropospheric ozone from satellite measurements, J. Geophys. Res. – Atmospheres, 106(D9), 9853–9867.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richter, A., Wagner, T. (2011). The Use of UV, Visible and Near IR Solar Back Scattered Radiation to Determine Trace Gases. In: Burrows, J., Borrell, P., Platt, U. (eds) The Remote Sensing of Tropospheric Composition from Space. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14791-3_2

Download citation