Advertisement

The Dramatic Drop of the Dead Sea: Background, Rates, Impacts and Solutions

  • Shahrazad Abu GhazlehEmail author
  • Abdulkader M. Abed
  • Stephan Kempe
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Up to the 1970s, freshwater input in the DS was able to maintain a less salty topmost water layer (epilimnion) over-riding a salt-saturated bottom water layer (hypolimnion). The epilimnion was ~40 m deep, had a seasonal temperature variation of between 19 and 37°C and a salinity of about 30%. The water was particularly rich in sulphate and bicarbonate. Below the density interface (pycnocline, 40–100 m of depth) the hypolimnion was characterized by a uniform temperature of ~22°C and a salinity of >34%; it contained hydrogen sulphide and high concentrations of magnesium, potassium, chlorine, and bromine. The hypolimnion was unmixed for a long time. It is saturated with sodium chloride that precipitates as halite on the bottom (Abed 1985). The unique mineral composition of the DS water and its high salt concentration make it suitable for the production of potassium and magnesium. In addition, the high salt concentration provides natural cures against various skin sicknesses and the high oxygen content and low UVB exposure make the DS a prime area for therapeutic tourism (Abdel-Fattah and Pingitore 2009; Charlier and Chaineux 2009).

Keywords

Lake Level Last Glacial Maximum Shuttle Radar Topography Mission Riparian Country Wadi Araba 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Fattah A, Pingitore E (2009) Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products. Environ Geochem Health 31:487–492CrossRefGoogle Scholar
  2. Abed AM (1985) The geology of the Dead Sea. Dar Al-Urqam, Amman (in Arabic)Google Scholar
  3. Abed AM (2000) Geology of Jordan, its water and environments. Jordanian Geologists Association, Amman (In Arabic)Google Scholar
  4. Abed AM, Yaghan R (2000) On the paleoclimate of Jordan during the last glacial maximum. Palaeogeogr Palaeoclimatol Palaeoecol 160:23–33CrossRefGoogle Scholar
  5. Abed AM, Carbonel C, Collina-Girard J, Fontugne M, Petit-Maire N, Jean-Claude R, Yasin S (2000) Un paleolac du dernier interglaciaire Pleistocene dans l’extreme-sud hyperarid de la Jordanie. C R Acad Sci Paris Sciences de la Terrauet des Planetes/Earth Planet Sci 330:259–264Google Scholar
  6. Abed AM, Yasin S, Sadaqah R (2008) The paleoclimate of the eastern Desert of Jordan during the marine isotope stage 9. Quat Res 69:458–468CrossRefGoogle Scholar
  7. Abelson M, Yechieli Y, Crouvi O, Baer G, Wachs D, Bein A (2006) Evolution of the Dead Sea sinkholes. In: Enzel Y, Agnon A, Stein M (eds) New frontier in Dead Sea paleoenvironmental research. Geological Society of America, Special Paper 401, pp 241–253Google Scholar
  8. Abou Eleanean KM, Aldamegh KS, Zharan HM, Hussein HM (2009) Regional waveform inversion of 2004 February 11 and 2007 February 09 Dead Sea earthquakes. Geophy J Int 176:185–199CrossRefGoogle Scholar
  9. Abou Karaki N, Closson D, Salameh E, de Tervaent M, Barjous M (2005) Natural, induced and environmental hazards along the Dead Sea coast, Jordan. Hydrogeologie und Umwelt 14:1–25Google Scholar
  10. Abu Ghazleh S, Kempe S (2009) Geomorphology of Lake Lisan terraces along the eastern coast of the Dead Sea, Jordan. Geomorphology 108:246–263CrossRefGoogle Scholar
  11. Abu Ghazleh S, Hartmann J, Jansen N, Kempe S (2009) Water input requirements of the rapidly shrinking Dead Sea. Naturwissenschaften 96:637–643CrossRefGoogle Scholar
  12. Al-Weshah RA (2000) The water balance of the Dead Sea: an integrated approach. Hydrol Process 14:145–154CrossRefGoogle Scholar
  13. Al-Zoubi A, Shulman A, Ben-Avraham Z (2002) Seismic ref lection profiles across the southern Dead Sea basin. Tectonophysics 346:61–69CrossRefGoogle Scholar
  14. Amit R, Zilberman E, Enzel Y, Porat N (2002) Paleoseismic evidence for time dependency of seismic response on a fault system in the southern Arava Valley, Dead Sea rift, Israel. Geol Surv Israel 114(2):192–206Google Scholar
  15. Bender F (1974) Geology of Jordan. Borntraeger, BerlinGoogle Scholar
  16. Beyth M, Gavrieli I, Anati D, Katz O (1993) Effects of the December 1991–May 1992 floods on the Dead Sea vertical structure. Israel J Earth Sci 42:45–47Google Scholar
  17. Bowen R, Jux U (1987) Afro-Arabian geology. Chapman and Hall, LondonGoogle Scholar
  18. Brew G, Brarazangi M, Al-Maleh K, Sawaf T (2001) Tectonic and geologic evolution of Syria. Geoarabia 6:573–616Google Scholar
  19. Charlier RH, Chaineux M-CP (2009) The healing sea: a sustainable coastal ocean resource: thalasssotherpy. J Coast Res 25:838–856CrossRefGoogle Scholar
  20. Closson D, Abou Karaki N, Klinger Y, Hussein MJ (2005) Subsidence and sinkhole hazard assessment in the southern Dead Sea area, Jordan. Pure Appl Geophys 162:221–248CrossRefGoogle Scholar
  21. Closson D, Abou Karaki N, Hallot F (2010) Landslides along the Jordanian Dead Sea coast triggered by the lake level lowering. Environ Earth Sci 59:1417–1430CrossRefGoogle Scholar
  22. El-Hasan T, Momani K, Al-Nawayseh J, Al-Nawayseh K (2008) Dead Sea influence on the chemical and mineralogical characteristics of the dry deposition fallen over the eastern highland of central Jordan. Env Geol 54:103–110CrossRefGoogle Scholar
  23. FoEME (2005) Crossing the Jordan, Concept document to rehabilitate and promote prosperity to the Lower Jordan River Valley, 32 ppGoogle Scholar
  24. Galli P (1999) Active tectonics along the Wadi Araba-Jordan Valley transform fault. J Geophys Res 104:2777–2796CrossRefGoogle Scholar
  25. Gavrieli A, Bein A, Oren A (2005) The expected impact of the Peace Conduct Project (The Red Sea-Dead Sea pipeline) on the Dead Sea. Mitig Adapt Strateg Glob Change 10:3–22CrossRefGoogle Scholar
  26. Haase-Schramm A, Goldstein SL, Stein M (2003) U-Th dating of Lake Lisan (late Pleistocene dead sea) aragonite and implications for glacial east Mediterranean climate change. Geochim Cosmochim Acta 68:985–1005CrossRefGoogle Scholar
  27. Hoffman D (2008) Greening the water Dead Sea-Red Sea conveyance project, ADAN Technical and economic servicesGoogle Scholar
  28. Huckriede R, Wiesemann G (1968) Der jungpleistozane Pluvial-See von El Jafr und weitere Daten zum Quartar Jordaniens. Geologica et Palaeontologica 2:73–95Google Scholar
  29. Ichinose GA, Begin ZB (2004) Simulation of Tsunamis and Lake Seiches for the Late Pleistocene Lake Lisan and the Dead Sea. Geol Surv Israel GSI/7/04: 1–50Google Scholar
  30. Katz A, Starinsky A (2009) Geochemical history of the Dead Sea. Aquat Geochem 15:159–194CrossRefGoogle Scholar
  31. Katz A, Kolodny Y, Nissenbaum A (1977) The geochemical evolution of the Pleistocene Lake Lisan–Dead Sea system. Geochim Cosmochim Acta 41:1609–1626CrossRefGoogle Scholar
  32. Ken-Tor R, Agnon A, Enzel Y, Stein M, Marco S, Negendank WFG (2001) High-resolution geological record of historic earthquakes in the Dead Sea basin. J Geophys Res 106:2221–2234CrossRefGoogle Scholar
  33. Khlaifat A (2008) Dead Sea rate of evaporation. American Journal of Applied Sciences 5(8): 934–942CrossRefGoogle Scholar
  34. Khlaifat A, Hogan M, Phillip G, Nawayseh K, Amira J, Talafeha E (2010) Long–term monitoring of the dead sea level and brine physico-chemical parameters “from 1987 to 2008”. J Mar Syst 81:207–212CrossRefGoogle Scholar
  35. Klinger Y, Avouac J, Abou Karaki N, Dorbath L, Bourles D, Reyss J (2000) Slip rate on the Dead Sea transform fault in northern Araba valley, Jordan. Geophys J Int 142:755–768CrossRefGoogle Scholar
  36. Krenkel E (1924) Der Syrische Bogen. Zentralblatt für Mineralogie Geologie und Palaontologie 9: 274–281, and 10: 301–313Google Scholar
  37. Landmann G, Abu Qudaira GM, Shawabkeh K, Wrede V, Kempe S (2002) Geochemistry of Lisan and Damya Formation in Jordan and implications on palaeoclimate. Quat Int 89:45–57CrossRefGoogle Scholar
  38. Levy Y (1984) The influence of the admixture rate of partly evaporated Mediterranean water to the Dead Sea on the properties of gypsum that is formed in the brine. Mediterranean – Dead Sea projects, Summary of Research and Surveys. Mediterranean – Dead Sea Company 5: 279–282 (in Hebrew)Google Scholar
  39. Migowski C, Agnon A, Bookman R, Negendank JFW, Stein M (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth Planet Sci Lett 222:301–314CrossRefGoogle Scholar
  40. Migowski C, Stein M, Prasad S, Negendank JFW, Agnon A (2006) Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quat Res 66(3):421–431CrossRefGoogle Scholar
  41. Neev D, Emery KO (1967) The Dead Sea, depositional processes and environments of evaporates. In: Bulletin, vol 41. Geological Survey of Israel, 147 ppGoogle Scholar
  42. Neuman HF, Kagan JE, Schwab JM, Stein M (2007) Palynology, sedimetology and palaeoecology of the late Holocene Dead Sea. Quat Sci Rev 26:1476–1498CrossRefGoogle Scholar
  43. Oren A (1983) Population dynamics of halobacteria in the Dead Sea water column. Limnol Oceanogr 28:1094–1103CrossRefGoogle Scholar
  44. Oren A, Shilo M (1985) Factors determining the development of algal and bacterial blooms in the Dead Sea: a study of simulation experiments in outdoor ponds. FEMS Microbiol Ecol 31:229–237CrossRefGoogle Scholar
  45. Oren A, Gurevich P, Anati DA, Barkan E, Luz B (1995) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173–185CrossRefGoogle Scholar
  46. Powell JH (1988) The geology of the Karak area, map sheet No. 3152 III. In: Geology directorate, vol 8. Natural Resources Authority, Amman, Jordan, 171 ppGoogle Scholar
  47. Quennell AM (1958) The structures and geomorphic evolution of the Dead Sea rift. Geol Soc Quart Jour Lond 14:1–24CrossRefGoogle Scholar
  48. Salameh HR (1997) Geomorphology of the eastern coast of the Dead Sea. Geo J 41(3):255–266Google Scholar
  49. Salameh E, El-Naser H (1990) Physical interpretation of the discharge coefficient of an aquifer, a maillet equation. Hydrogeologie und Umwelt, Heft 1:129–136Google Scholar
  50. Salameh E, El-Naser H (1999) Does the actual drop in Dead Sea level reflect the development of water sources within its drainage basin? Acta Hydrochimica et Hydrobiologica 27:5–11CrossRefGoogle Scholar
  51. Salameh E, El-Naser H (2000) Changes in the Dead Sea level and their impacts on the surrounding groundwater bodies. Acta Hydrochimica et Hydrobiologica 28:24–33CrossRefGoogle Scholar
  52. Salameh E, El-Naser H (2009) Retreat of the Dead Sea and its effect on the surrounding groundwater resources and the stability of its coastal deposits. In: Möller P, Rosenthal E, Hötzel H (eds) The water of the Jordan valley. Springer, Berlin, pp 247–264CrossRefGoogle Scholar
  53. Schirva-Schwartz M, Calvo R, Bein A, Burg A, Nof R, Baer G (2006) Red Sea-Dead Sea Conduit: geo-environmental study along the Arava Valley. Geol Surv Israel 29:1–39Google Scholar
  54. Steinhorn I (1983) In situ salt precipitation at the Dead Sea. Limnol Oceanogr 28:580–583CrossRefGoogle Scholar
  55. Stow D (2010) Vanished ocean: how tethys reshaped the world. Oxford University Press, USA, 288 ppGoogle Scholar
  56. Talafeha E (2009) Ponds superintendent, Arab Potash Company, Personal interview, Safi, Jordan, June 4th, 2009Google Scholar
  57. The Harza JRV Group (1996) Red Sea-Dead Sea Canal Project, Draft Prefeasibility Report, Main Report. Jordan Rift Valley Steering Committee of the Trilateral Economic CommitteeGoogle Scholar
  58. The Jerusalem Institute for Israel studies (2006) The Dead Sea Basin: Assessment of current situation and prospects for the future under continued Dead Sea Water-Level DeclineGoogle Scholar
  59. Turner AK, Schuster RL (eds) (1996) 1996 Landslides—investigation and mitigation. National Academy Press, Washington, DC, Transportation Research Board Special Report 247, 673 ppGoogle Scholar
  60. Vardi J (1990) Mediterranean-Dead Sea Project, Historical Review; Geological Survey of Israel, GSI/9/90: 31–50Google Scholar
  61. Waldmann N, Starinsky A, Stein M (2007) Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea basin. Quat Sci Rev 26:2219–2228CrossRefGoogle Scholar
  62. Allen W (1855) The Dead Sea, A new route to India; with other fragments. Brown ad Co, London, pp 374Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shahrazad Abu Ghazleh
    • 1
    Email author
  • Abdulkader M. Abed
    • 2
  • Stephan Kempe
    • 1
  1. 1.Darmstadt University of TechnologyDarmstadtGermany
  2. 2.University of JordanAmmanJordan

Personalised recommendations