Skip to main content

Histone Variants during Gametogenesis and Early Development

  • Chapter
  • First Online:
Epigenetics and Human Reproduction

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

The objective of this chapter is to give an overview of the role of histone variants mainly in mammalian spermatogenesis. Two aspects emerge: their roles in the process of spermatogenesis itself and second, are histones including their variants instrumental in passing on information to the next generation? As to the first topic, enough experimental data have been assembled to be certain about the role of histone variants, accommodating chromatin regulation especially for meiosis and spermatid nucleus elongation.

As to the second question, there is only nonconclusive experimental evidence for a role of histone variants per se, although the concept of male-transmitted epigenetic inheritance and effects has been convincingly proven for the mouse.

The biological value in such a concept is that adaptation to newly arising circumstances does not have to rely on mutation and selection only, but could be accommodated on a shorter time axis. One particular area where some of the variation in transmission, putatively evoked by sperm-retained histones, could be studied is in the sphere of human artificial reproduction because male gametes, that in a free competition would never lead to offspring, are now called to action and are capable of producing offspring of normal phenotype.

An overview will be given on histones in meiosis, during spermiogenesis and preserved in sperm. Subsequently, mouse data on the principle of male transgenerational inheritance and effects are provided. The chapter is closed by formulations on future directions of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EA, van der Vaart A, Barten A, Kal HB, Chen J, Lou Z, Minter-Dykhouse K, Bartkova J, Bartek J, de Boer P et al (2007) Differences in DNA double strand breaks repair in male germ cell types: lessons learned from a differential expression of Mdc1 and 53BP1. DNA Repair (Amst) 6:1243–1254

    CAS  Google Scholar 

  • Ahmed EA, de Boer P, Philippens ME, Kal HB, and de Rooij DG (2010) Parp1-XRCC1 and the repair of DNA double strand breaks in mouse round spermatids. Mutat Res 683:84–90

    Google Scholar 

  • Albert M, Peters AH (2009) Genetic and epigenetic control of early mouse development. Curr Opin Genet Dev 19:113–121

    PubMed  CAS  Google Scholar 

  • Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181:296–307

    PubMed  CAS  Google Scholar 

  • Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A, Platts AE, Saida M, Steger K, Tedder P, Miller D (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19:1338–1349

    PubMed  CAS  Google Scholar 

  • Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A et al (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13:336–342

    PubMed  CAS  Google Scholar 

  • Banerjee S, Smallwood A, Hulten M (1995) ATP-dependent reorganization of human sperm nuclear chromatin. J Cell Sci 108(Pt 2):755–765

    PubMed  CAS  Google Scholar 

  • Barber RC, Dubrova YE (2006) The offspring of irradiated parents, are they stable? Mutat Res 598:50–60

    PubMed  CAS  Google Scholar 

  • Barber R, Plumb MA, Boulton E, Roux I, Dubrova YE (2002) Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice. Proc Natl Acad Sci USA 99:6877–6882

    PubMed  CAS  Google Scholar 

  • Bartolomei MS (2009) Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev 23:2124–2133

    PubMed  CAS  Google Scholar 

  • Bernstein E, Hake SB (2006) The nucleosome: a little variation goes a long way. Biochem Cell Biol 84:505–517

    PubMed  CAS  Google Scholar 

  • Blanco-Rodriguez J (2009) GammaH2AX marks the main events of the spermatogenic process. Microsc Res Tech 72:823–832

    PubMed  CAS  Google Scholar 

  • Blewitt ME, Vickaryous NK, Paldi A, Koseki H, Whitelaw E (2006) Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice. PLoS Genet 2:e49

    PubMed  CAS  Google Scholar 

  • Boulard M, Gautier T, Mbele GO, Gerson V, Hamiche A, Angelov D, Bouvet P, Dimitrov S (2006) The NH2 tail of the novel histone variant H2BFWT exhibits properties distinct from conventional H2B with respect to the assembly of mitotic chromosomes. Mol Cell Biol 26:1518–1526

    PubMed  CAS  Google Scholar 

  • Boussouar F, Rousseaux S, Khochbin S (2008) A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle 7:3499–3502

    PubMed  CAS  Google Scholar 

  • Bramlage B, Kosciessa U, Doenecke D (1997) Differential expression of the murine histone genes H3.3A and H3.3B. Differentiation 62:13–20

    PubMed  CAS  Google Scholar 

  • Braunschweig U, Hogan GJ, Pagie L, and van SB (2009) Histone H1 binding is inhibited by histone variant H3.3. EMBO J 28:3635–3645

    Google Scholar 

  • Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schübeler D, Stadler MB, Peters AH (2010) Nat Struct Mol Biol. 17(6):679–87

    Google Scholar 

  • Burfeind P, Hoyer-Fender S, Doenecke D, Hochhuth C, Engel W (1994) Expression and chromosomal mapping of the gene encoding the human histone H1.1. Hum Genet 94:633–639

    PubMed  CAS  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10:207–216

    PubMed  CAS  Google Scholar 

  • Catena R, Ronfani L, Sassone-Corsi P, Davidson I (2006) Changes in intranuclear chromatin architecture induce bipolar nuclear localization of histone variant H1T2 in male haploid spermatids. Dev Biol 296:231–238

    PubMed  CAS  Google Scholar 

  • Catena R, Escoffier E, Caron C, Khochbin S, Martianov I, Davidson I (2009) HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids. Biol Reprod 80:358–366

    PubMed  CAS  Google Scholar 

  • Cattanach BM, Beechey CV, Peters J (2006) Interactions between imprinting effects: summary and review. Cytogenet Genome Res 113:17–23

    PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152:375–384

    PubMed  CAS  Google Scholar 

  • Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR (2007) Developmental changes in histone macroH2A1-mediated gene regulation. Mol Cell Biol 27:2758–2764

    PubMed  CAS  Google Scholar 

  • Chicheportiche A, Bernardino-Sgherri J, de MB, and Dutrillaux B (2007) Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse. J Cell Sci 120:1733–1742

    Google Scholar 

  • Chong S, Vickaryous N, Ashe A, Zamudio N, Youngson N, Hemley S, Stopka T, Skoultchi A, Matthews J, Scott HS et al (2007) Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat Genet 39:614–622

    PubMed  CAS  Google Scholar 

  • Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Morton BE, Zalensky A (2004a) Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84:745–756

    PubMed  CAS  Google Scholar 

  • Churikov D, Zalenskaya IA, Zalensky AO (2004b) Male germline-specific histones in mouse and man. Cytogenet Genome Res 105:203–214

    PubMed  CAS  Google Scholar 

  • Couldrey C, Carlton MB, Nolan PM, Colledge WH, Evans MJ (1999) A retroviral gene trap insertion into the histone 3.3A gene causes partial neonatal lethality, stunted growth, neuromuscular deficits and male sub-fertility in transgenic mice. Hum Mol Genet 8:2489–2495

    PubMed  CAS  Google Scholar 

  • de Boer P, Branje HE (1979) Association of the extra chromosome of tertiary trisomic male mice with the sex chromosomes during first meiotic prophase, and its significance for impairment of spermatogenesis. Chromosoma 73:369–379

    PubMed  Google Scholar 

  • de Boer P, Searle AG, van der Hoeven FA, de Rooij DG, Beechey CV (1986) Male pachytene pairing in single and double translocation heterozygotes and spermatogenic impairment in the mouse. Chromosoma 93:326–336

    PubMed  Google Scholar 

  • de Boer P, Ramos L, de Vries M, and Gochhait S (2010) Memoirs of an insult: sperm as a possible source of transgenerational epimutations and genetic instability. Mol Hum Reprod 16:48–56

    Google Scholar 

  • Delaval K, Govin J, Cerqueira F, Rousseaux S, Khochbin S, and Feil R (2007) Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 26:720–729

    Google Scholar 

  • Delbridge ML, Graves JA (2007) Origin and evolution of spermatogenesis genes on the human sex chromosomes. Soc Reprod Fertil Suppl 65:1–17

    PubMed  CAS  Google Scholar 

  • Drabent B, Saftig P, Bode C, Doenecke D (2000) Spermatogenesis proceeds normally in mice without linker histone H1t. Histochem Cell Biol 113:433–442

    PubMed  CAS  Google Scholar 

  • Dubrova YE, Plumb M, Gutierrez B, Boulton E, Jeffreys AJ (2000) Transgenerational mutation by radiation. Nature 405:37

    PubMed  CAS  Google Scholar 

  • Eirin-Lopez JM, Ausio J (2009) Origin and evolution of chromosomal sperm proteins. Bioessays 31:1062–1070

    PubMed  CAS  Google Scholar 

  • Fan Y, Sirotkin A, Russell RG, Ayala J, Skoultchi AI (2001) Individual somatic H1 subtypes are dispensable for mouse development even in mice lacking the H1(0) replacement subtype. Mol Cell Biol 21:7933–7943

    PubMed  CAS  Google Scholar 

  • Fantz DA, Hatfield WR, Horvath G, Kistler MK, Kistler WS (2001) Mice with a targeted disruption of the H1t gene are fertile and undergo normal changes in structural chromosomal proteins during spermiogenesis. Biol Reprod 64:425–431

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Liebe B, Scherthan H, Nussenzweig A (2003a) H2AX regulates meiotic telomere clustering. J Cell Biol 163:15–20

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003b) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    PubMed  CAS  Google Scholar 

  • Forejt J, Gregorova S (1977) Meiotic studies of translocations causing male sterility in the mouse I. Autosomal reciprocal translocations. Cytogenet Cell Genet 19:159–179

    PubMed  CAS  Google Scholar 

  • Franke K, Drabent B, Doenecke D (1998) Testicular expression of the mouse histone H1.1 gene. Histochem Cell Biol 109:383–390

    PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP (1998) Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol 18:3350–3356

    PubMed  CAS  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW (1987) Sequence-specific packaging of DNA in human sperm chromatin. Science 236:962–964

    PubMed  CAS  Google Scholar 

  • Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666

    PubMed  CAS  Google Scholar 

  • Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S (2010) From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 277(3):599–604. Epub 2009 Dec 15. Review

    Google Scholar 

  • Gillies CR (1989) Fertility and chromosome paring: recent studies in plants and animals. CRC, Boca Raton, FL pp 37–76

    Google Scholar 

  • Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO (2000) Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151:1591–1598

    PubMed  CAS  Google Scholar 

  • Godde JS, Ura K (2009) Dynamic alterations of linker histone variants during development. Int J Dev Biol 53:215–224

    PubMed  CAS  Google Scholar 

  • Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thevenon J, Catena R, Davidson I, Garin J, Khochbin S et al (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294

    PubMed  CAS  Google Scholar 

  • Greaves IK, Rangasamy D, Devoy M, Marshall Graves JA, Tremethick DJ (2006) The X and Y chromosomes assemble into H2A.Z, containing facultative heterochromatin, following meiosis. Mol Cell Biol 26:5394–5405

    PubMed  CAS  Google Scholar 

  • Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA 103:6428–6435

    PubMed  CAS  Google Scholar 

  • Hamer G, Roepers-Gajadien HL, van Duyn-Goedhart A, Gademan IS, Kal HB, van Buul PP, de Rooij DG (2003) DNA double-strand breaks and gamma-H2AX signaling in the testis. Biol Reprod 68:628–634

    PubMed  CAS  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    PubMed  CAS  Google Scholar 

  • Hodges CA, Revenkova E, Jessberger R, Hassold TJ, Hunt PA (2005) SMC1beta-deficient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 37:1351–1355

    PubMed  CAS  Google Scholar 

  • Homolka D, Ivanek R, Capkova J, Jansa P, Forejt J (2007) Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res 17:1431–1437

    PubMed  CAS  Google Scholar 

  • Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KH (2000) Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proc Natl Acad Sci USA 97:1148–1153

    PubMed  CAS  Google Scholar 

  • Hoyer-Fender S, Czirr E, Radde R, Turner JM, Mahadevaiah SK, Pehrson JR, Burgoyne PS (2004) Localisation of histone macroH2A1.2 to the XY-body is not a response to the presence of asynapsed chromosome axes. J Cell Sci 117:189–198

    PubMed  CAS  Google Scholar 

  • Ideraabdullah FY, Vigneau S, Bartolomei MS (2008) Genomic imprinting mechanisms in mammals. Mutat Res 647:77–85

    PubMed  CAS  Google Scholar 

  • Iguchi N, Tanaka H, Yomogida K, Nishimune Y (2003) Isolation and characterization of a novel cDNA encoding a DNA-binding protein (Hils1) specifically expressed in testicular haploid germ cells. Int J Androl 26(6):354–365

    Google Scholar 

  • Ishibashi T, Li A, Eirin-Lopez JM, Zhao M, Missiaen K, Abbott DW, Meistrich M, Hendzel MJ, and Ausio J (2010) H2A.Bbd: an X-chromosome-encoded histone involved in mammalian spermiogenesis. Nucleic Acids Res 38:1780–1789

    Google Scholar 

  • Jedrzejczak P, Kempisty B, Bryja A, Mostowska M, Depa-Martynow M, Pawelczyk L, Jagodzinski PP (2007) Quantitative assessment of transition proteins 1, 2 spermatid-specific linker histone H1-like protein transcripts in spermatozoa from normozoospermic and asthenozoospermic men. Arch Androl 53:199–205

    PubMed  CAS  Google Scholar 

  • Jha R, Agarwal A, Mahfouz R, Paasch U, Grunewald S, Sabanegh E, Yadav SP, Sharma R (2009) Determination of Poly (ADP-ribose) polymerase (PARP) homologues in human ejaculated sperm and its correlation with sperm maturation. Fertil Steril 91:782–790

    PubMed  CAS  Google Scholar 

  • Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21:1519–1529

    PubMed  CAS  Google Scholar 

  • Jobling MA (2008) Copy number variation on the human Y chromosome. Cytogenet Genome Res 123:253–262

    PubMed  CAS  Google Scholar 

  • Kang-Decker N, Mantchev GT, Juneja SC, McNiven MA, van Deursen JM (2001) Lack of acrosome formation in Hrb-deficient mice. Science 294:1531–1533

    PubMed  CAS  Google Scholar 

  • Katz DJ, Edwards TM, Reinke V, Kelly WG (2009) A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell 137:308–320

    PubMed  CAS  Google Scholar 

  • Kawahara M, Wu Q, Takahashi N, Morita S, Yamada K, Ito M, Ferguson-Smith AC, Kono T (2007) High-frequency generation of viable mice from engineered bi-maternal embryos. Nat Biotechnol 25:1045–1050

    PubMed  CAS  Google Scholar 

  • Kierszenbaum AL, Rivkin E, Tres LL (2007) Molecular biology of sperm head shaping. Soc Reprod Fertil Suppl 65:33–43

    PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet 13:91–94

    PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Wu Q, Niwa K, Ono Y, Yamamoto Y, Park ES, Seo JS, Ogawa H (2004) Birth of parthenogenetic mice that can develop to adulthood. Nature 428:860–864

    PubMed  CAS  Google Scholar 

  • Kovtun IV, McMurray CT (2001) Trinucleotide expansion in haploid germ cells by gap repair. Nat Genet 27:407–411

    PubMed  CAS  Google Scholar 

  • Krausz C, Degl’Innocenti S (2006) Y chromosome and male infertility: update, 2006. Front Biosci 11:3049–3061

    PubMed  CAS  Google Scholar 

  • Laberge RM, Boissonneault G (2005) On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod 73:289–296

    PubMed  CAS  Google Scholar 

  • Leduc F, Maquennehan V, Nkoma GB, Boissonneault G (2008a) DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod 78:324–332

    PubMed  CAS  Google Scholar 

  • Leduc F, Nkoma GB, Boissonneault G (2008b) Spermiogenesis and DNA repair: a possible etiology of human infertility and genetic disorders. Syst Biol Reprod Med 54:3–10

    PubMed  CAS  Google Scholar 

  • Lee J, Kanatsu-Shinohara M, Ogonuki N, Miki H, Inoue K, Morimoto T, Morimoto H, Ogura A, Shinohara T (2009) Heritable imprinting defect caused by epigenetic abnormalities in mouse spermatogonial stem cells. Biol Reprod 80:518–527

    PubMed  CAS  Google Scholar 

  • Lempiainen H, Halazonetis TD (2009) Emerging common themes in regulation of PIKKs and PI3Ks. EMBO J 28:3067–3073

    PubMed  Google Scholar 

  • Li A, Maffey AH, Abbott WD, Silva Conde e, Prunell A, Siino J, Churikov D, Zalensky AO, Ausio J (2005) Characterization of nucleosomes consisting of the human testis/sperm-specific histone H2B variant (hTSH2B). Biochemistry 44:2529–2535

    PubMed  CAS  Google Scholar 

  • Lin Q, Sirotkin A, Skoultchi AI (2000) Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol 20:2122–2128

    PubMed  CAS  Google Scholar 

  • Lin Q, Inselman A, Han X, Xu H, Zhang W, Handel MA, Skoultchi AI (2004) Reductions in linker histone levels are tolerated in developing spermatocytes but cause changes in specific gene expression. J Biol Chem 279:23525–23535

    PubMed  CAS  Google Scholar 

  • Liu L, Bailey SM, Okuka M, Munoz P, Li C, Zhou L, Wu C, Czerwiec E, Sandler L, Seyfang A et al (2007) Telomere lengthening early in development. Nat Cell Biol 9:1436–1441

    PubMed  CAS  Google Scholar 

  • Lucifero D, La SS, Bourc’his D, Martel J, Bestor TH, Trasler JM (2007) Coordinate regulation of DNA methyltransferase expression during oogenesis. BMC Dev Biol 7:36

    PubMed  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    PubMed  CAS  Google Scholar 

  • Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I (2005) Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci USA 102:2808–2813

    PubMed  CAS  Google Scholar 

  • Maymon BB, Cohen-Armon M, Yavetz H, Yogev L, Lifschitz-Mercer B, Kleiman SE, Botchan A, Hauser R, Paz G (2006) Role of poly(ADP-ribosyl)ation during human spermatogenesis. Fertil Steril 86:1402–1407

    PubMed  CAS  Google Scholar 

  • McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    PubMed  CAS  Google Scholar 

  • Meistrich ML, Bucci LR, Trostle-Weige PK, Brock WA (1985) Histone variants in rat spermatogonia and primary spermatocytes. Dev Biol 112:230–240

    PubMed  CAS  Google Scholar 

  • Meyer-Ficca ML, Scherthan H, Burkle A, Meyer RG (2005) Poly(ADP-ribosyl)ation during chromatin remodeling steps in rat spermiogenesis. Chromosoma 114:67–74

    PubMed  CAS  Google Scholar 

  • Miller D, Brinkworth M, and Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? Reproduction 139:287–301

    Google Scholar 

  • Moens PB, Chen DJ, Shen Z, Kolas N, Tarsounas M, Heng HH, Spyropoulos B (1997) Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106:207–215

    PubMed  CAS  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    PubMed  CAS  Google Scholar 

  • Morgan HD, Jin XL, Li A, Whitelaw E, O’Neill C (2008) The culture of zygotes to the blastocyst stage changes the postnatal expression of an epigentically labile allele, agouti viable yellow, in mice. Biol Reprod 79:618–623

    PubMed  CAS  Google Scholar 

  • Moss SB, Challoner PB, Groudine M (1989) Expression of a novel histone 2B during mouse spermiogenesis. Dev Biol 133:83–92

    PubMed  CAS  Google Scholar 

  • Mueller JL, Mahadevaiah SK, Park PJ, Warburton PE, Page DC, Turner JM (2008) The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet 40:794–799

    PubMed  CAS  Google Scholar 

  • Namekawa SH, Park PJ, Zhang LF, Shima JE, McCarrey JR, Griswold MD, Lee JT (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16:660–667

    PubMed  CAS  Google Scholar 

  • Ng RK, Gurdon JB (2008) Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat Cell Biol 10:102–109

    PubMed  CAS  Google Scholar 

  • Oakberg EF (1956a) A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 99:391–413

    PubMed  CAS  Google Scholar 

  • Oakberg EF (1956b) Duration of spermatogenesis in the mouse and timing of stages of the cycle in the seminiferous epithelium. Am J Anat 99:507–516

    PubMed  CAS  Google Scholar 

  • Ooi SL, Henikoff S (2007) Germline histone dynamics and epigenetics. Curr Opin Cell Biol 19:257–265

    PubMed  CAS  Google Scholar 

  • Orsi GA, Couble P, Loppin B (2009) Epigenetic and replacement roles of histone variant H3.3 in reproduction and development. Int J Dev Biol 53:231–243

    PubMed  CAS  Google Scholar 

  • Palmer DK, O’Day K, Margolis RL (1990) The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma 100:32–36

    PubMed  CAS  Google Scholar 

  • Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257:1398–1400

    PubMed  CAS  Google Scholar 

  • Peters AH, Plug AW, de Boer P (1997) Meiosis in carriers of heteromorphic bivalents: sex differences and implications for male fertility. Chromosome Res 5:313–324

    PubMed  CAS  Google Scholar 

  • Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211

    PubMed  Google Scholar 

  • Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127:481–493

    PubMed  CAS  Google Scholar 

  • Pradeepa MM, Rao MR (2007) Chromatin remodeling during mammalian spermatogenesis: role of testis specific histone variants and transition proteins. Soc Reprod Fertil Suppl 63:1–10

    PubMed  CAS  Google Scholar 

  • Puschendorf M, Terranova R, Boutsma E, Mao X, Isono K, Brykczynska U, Kolb C, Otte AP, Koseki H, Orkin SH et al (2008) PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nat Genet 40:411–420

    PubMed  CAS  Google Scholar 

  • Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E (2003) Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci USA 100:2538–2543

    PubMed  CAS  Google Scholar 

  • Ramos L, van der Heijden GW, Derijck A, Berden JH, Kremer JA, van der Vlag J, de Boer P (2008) Incomplete nuclear transformation of human spermatozoa in oligo-astheno-teratospermia: characterization by indirect immunofluorescence of chromatin and thiol status. Hum Reprod 23:259–270

    PubMed  CAS  Google Scholar 

  • Rassoulzadegan M, Grandjean V, Gounon P, Vincent S, Gillot I, Cuzin F (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474

    PubMed  CAS  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562

    PubMed  CAS  Google Scholar 

  • Reynard LN, Turner JM (2009) Increased sex chromosome expression and epigenetic abnormalities in spermatids from male mice with Y chromosome deletions. J Cell Sci 122:4239–4248

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    PubMed  CAS  Google Scholar 

  • Rose KL, Li A, Zalenskaya I, Zhang Y, Unni E, Hodgson KC, Yu Y, Shabanowitz J, Meistrich ML, Hunt DF et al (2008) C-terminal phosphorylation of murine testis-specific histone H1t in elongating spermatids. J Proteome Res 7:4070–4078

    PubMed  CAS  Google Scholar 

  • Rousseaux S, Caron C, Govin J, Lestrat C, Faure AK, Khochbin S (2005) Establishment of male-specific epigenetic information. Gene 345:139–153

    PubMed  CAS  Google Scholar 

  • Rousseaux S, Reynoird N, Escoffier E, Thevenon J, Caron C, Khochbin S (2008) Epigenetic reprogramming of the male genome during gametogenesis and in the zygote. Reprod Biomed Online 16:492–503

    PubMed  CAS  Google Scholar 

  • Sakai A, Schwartz BE, Goldstein S, Ahmed K (2009) Transcriptional and developmental functions of the H3.3 histone variant in Drosophila. Current Biology 19:1816–1820

    PubMed  CAS  Google Scholar 

  • Santenard A, Torres-Padilla ME (2009) Epigenetic reprogramming in mammalian reproduction: contribution from histone variants. Epigenetics 4:80–84

    PubMed  CAS  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    PubMed  CAS  Google Scholar 

  • Santos F, Peters AH, Otte AP, Reik W, Dean W (2005) Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280:225–236

    PubMed  CAS  Google Scholar 

  • Schoenmakers S, Wassenaar E, van Cappellen WA, Derijck AA, de Boer P, Laven JS, Grootegoed JA, Baarends WM (2008) Increased frequency of asynapsis and associated meiotic silencing of heterologous chromatin in the presence of irradiation-induced extra DNA double strand breaks. Dev Biol 317:270–281

    PubMed  CAS  Google Scholar 

  • Singleton S, Mudrak O, Morshedi M, Oehninger S, Zalenskaya I, Zalensky A (2007a) Characterisation of a human sperm cell subpopulation marked by the presence of the TSH2B histone. Reprod Fertil Dev 19:392–397

    PubMed  CAS  Google Scholar 

  • Singleton S, Zalensky A, Doncel GF, Morshedi M, Zalenskaya IA (2007b) Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod 22:743–750

    PubMed  CAS  Google Scholar 

  • Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92:1237–1241

    PubMed  CAS  Google Scholar 

  • Srivastava N, Gochhait S, de Boer P, Bamezai RN (2009) Role of H2AX in DNA damage response and human cancers. Mutat Res 681:180–188

    PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    PubMed  CAS  Google Scholar 

  • Svetlanov A, Baudat F, Cohen PE, de Massy B (2008) Distinct functions of MLH3 at recombination hot spots in the mouse. Genetics 178:1937–1945

    PubMed  CAS  Google Scholar 

  • Syed SH, Boulard M, Shukla MS, Gautier T, Travers A, Bednar J, Faivre-Moskalenko C, Dimitrov S, Angelov D (2009) The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res 37:4684–4695

    PubMed  CAS  Google Scholar 

  • Tachibana M, Nozaki M, Takeda N, Shinkai Y (2007) Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26:3346–3359

    PubMed  CAS  Google Scholar 

  • Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K et al (2005) HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Mol Cell Biol 25:7107–7119

    PubMed  CAS  Google Scholar 

  • Thakar A, Gupta P, Ishibashi T, Finn R, Silva-Moreno B, Uchiyama S, Fukui K, Tomschik M, Ausio J, Zlatanova J (2009) H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry 48:10852–10857

    PubMed  CAS  Google Scholar 

  • Torres-Padilla ME, Bannister AJ, Hurd PJ, Kouzarides T, Zernicka-Goetz M (2006) Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos. Int J Dev Biol 50:455–461

    PubMed  CAS  Google Scholar 

  • Trostle-Weige PK, Meistrich ML, Brock WA, Nishioka K, Bremer JW (1982) Isolation and characterization of TH2A, a germ cell-specific variant of histone 2A in rat testis. J Biol Chem 257:5560–5567

    PubMed  CAS  Google Scholar 

  • Trostle-Weige PK, Meistrich ML, Brock WA, Nishioka K (1984) Isolation and characterization of TH3, a germ cell-specific variant of histone 3 in rat testis. J Biol Chem 259:8769–8776

    PubMed  CAS  Google Scholar 

  • Turner JM (2007) Meiotic sex chromosome inactivation. Development 134:1823–1831

    PubMed  CAS  Google Scholar 

  • Turner JM, Aprelikova O, Xu X, Wang R, Kim S, Chandramouli GV, Barrett JC, Burgoyne PS, Deng CX (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14:2135–2142

    PubMed  CAS  Google Scholar 

  • Unni E, Mayerhofer A, Zhang Y, Bhatnagar YM, Russell LD, Meistrich ML (1995) Increased accessibility of the N-terminus of testis-specific histone TH2B to antibodies in elongating spermatids. Mol Reprod Dev 42:210–219

    PubMed  CAS  Google Scholar 

  • van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, van der Vlag J, de Boer P (2005) Asymmetry in Histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122:1008–1022

    PubMed  Google Scholar 

  • van der Heijden GW, Derijck AA, Ramos L, Giele M, van der Vlag J, de Boer P (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298:458–469

    PubMed  Google Scholar 

  • van der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, van der Vlag J, Peters AH, de Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258

    PubMed  Google Scholar 

  • van der Heijden GW, Ramos L, Baart EB, van den Berg I, Derijck AA, van der Vlag J, Martini E, de Boer P (2008) Sperm-derived histones contribute to zygotic chromatin in humans. BMC Dev Biol 8:34

    PubMed  Google Scholar 

  • van der Heijden GW, van den Berg I, Baart EB, Derijck AA, Martini E, de Boer P (2009) Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI. Mol Reprod Dev 76:101–108

    PubMed  Google Scholar 

  • van Roijen HJ, Ooms MP, Spaargaren MC, Baarends WM, Weber RF, Grootegoed JA, Vreeburg JT (1998) Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod 13:1559–1566

    PubMed  Google Scholar 

  • Ward WS (2010) Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod 16:30–36

    Google Scholar 

  • West MH, Bonner WM (1980) Histone 2A, a heteromorphous family of eight protein species. Biochemistry 19:3238–3245

    PubMed  CAS  Google Scholar 

  • Witt O, Albig W, Doenecke D (1996) Testis-specific expression of a novel human H3 histone gene. Exp Cell Res 229:301–306

    Google Scholar 

  • Wright DL, Jones EL, Mayer JF, Oehninger S, Gibbons WE, Lanzendorf SE (2001) Characterization of telomerase activity in the human oocyte and preimplantation embryo. Mol Hum Reprod 7:947–955

    PubMed  CAS  Google Scholar 

  • Wu F, Caron C, De RC, Khochbin S, Rousseaux S (2008) Testis-specific histone variants H2AL1/2 rapidly disappear from paternal heterochromatin after fertilization. J Reprod Dev 54:413–417

    PubMed  CAS  Google Scholar 

  • Wykes SM, Krawetz SA (2003) The structural organization of sperm chromatin. J Biol Chem 278:29471–29477

    PubMed  CAS  Google Scholar 

  • Yan W, Ma L, Burns KH, Matzuk MM (2003) HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci USA 100:10546–10551

    PubMed  CAS  Google Scholar 

  • Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci USA 99:11211–11216

    PubMed  CAS  Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257

    PubMed  CAS  Google Scholar 

  • Zalenskaya IA, Bradbury EM, Zalensky AO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279:213–218

    PubMed  CAS  Google Scholar 

  • Zalensky AO, Breneman JW, Zalenskaya IA, Brinkley BR, Bradbury EM (1993) Organization of centromeres in the decondensed nuclei of mature human sperm. Chromosoma 102:509–518

    PubMed  CAS  Google Scholar 

  • Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, Bradbury EM (2002) Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 277:43474–43480

    PubMed  CAS  Google Scholar 

  • Zeng F, Baldwin DA, Schultz RM (2004) Transcript profiling during preimplantation mouse development. Dev Biol 272:483–496

    PubMed  CAS  Google Scholar 

  • Zhang X, Gabriel MS, Zini A (2006) Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl 27:414–420

    PubMed  Google Scholar 

  • Zlatanova J, Thakar A (2008) H2A.Z: view from the top. Structure16:166–179

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. de Boer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

de Boer, P., de Vries, M., Gochhait, S. (2011). Histone Variants during Gametogenesis and Early Development. In: Rousseaux, S., Khochbin, S. (eds) Epigenetics and Human Reproduction. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14773-9_8

Download citation

Publish with us

Policies and ethics