Skip to main content

Meiotic Pairing of Homologous Chromosomes and Silencing of Heterologous Regions

  • Chapter
  • First Online:
  • 1548 Accesses

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

In meiotic prophase, homologous chromosomes pair and recombine, which ensures correct segregation of the homologs at the metaphase to anaphase transition of the first meiotic division. As a first step, early in meiotic prophase, DNA double-strand breaks (DSBs) are introduced by SPO11 at hundreds of sites throughout the genome. In mammals, formation and repair of these breaks is essential for the pairing process. The sex chromosomes, X and Y, are largely heterologous and pair only in the small pseudoautosomal homologous regions. The large heterologous regions show delayed repair of DSBs and asynapsis, which triggers meiotic sex chromosome inactivation (MSCI), leading to the formation of the transcriptionally silenced XY body. Initiation of XY body formation is known to require phosphorylation of H2AX, which is also associated with damage-induced DSB repair in somatic cells.

MSCI is considered as a specialized form of a general meiotic silencing mechanism that also silences autosomal unsynapsed chromatin during male and female meiotic prophase: meiotic silencing of unsynapsed chromatin (MSUC). Whereas the XY pair remains always largely unsynapsed and inactivated, autosomal nonhomologous regions frequently show heterologous synapsis and escape from inactivation. Hence, MSUC is less efficient than MSCI. However, if MSUC occurs, MSCI is incomplete, indicating that the two mechanisms are functionally interacting.

Herein, we briefly review how X and Y evolved from a pair of autosomes, in relation to X-chromosomal dosage compensation in females and MSCI in males. Next, we describe current ideas about initiation and maintenance of MSCI and MSUC. We also discuss MSCI in birds, a species with female heterogamety. Insight in the mechanism of meiotic silencing is highly relevant for our understanding of male infertility associated with translocations, particularly when these occur between an autosome and the X. Furthermore, we anticipate that dysregulation of MSCI may impact on early embryonic development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya SN, Many AM, Schroeder AP et al (2008) Coprinus cinereus rad50 mutants reveal an essential structural role for Rad50 in axial element and synaptonemal complex formation, homolog pairing and meiotic recombination. Genetics 180:1889–1907

    PubMed  CAS  Google Scholar 

  • Anderson LK, Reeves A, Webb LM et al (1999) Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151:1569–1579

    PubMed  CAS  Google Scholar 

  • Ashley T, Gaeth AP, Creemers LB et al (2004a) Correlation of meiotic events in testis sections and microspreads of mouse spermatocytes relative to the mid-pachytene checkpoint. Chromosoma 113:126–136

    PubMed  Google Scholar 

  • Ashley T, Westphal C, Plug-de Maggio A et al (2004b) The mammalian mid-pachytene checkpoint: meiotic arrest in spermatocytes with a mutation in Atm alone or in combination with a Trp53 (p53) or Cdkn1a (p21/cip1) mutation. Cytogenet Genome Res 107:256–262

    PubMed  CAS  Google Scholar 

  • Ahmed EA, van der Vaart A, Barten A, Kal HB, Chen J, Lou Z, Minter-Dykhouse K, Bartkova J, Bartek J, de Boer P, de Rooij DG (2007) Differences in DNA double strand breaks repair in male germ cell types: lessons learned from a differential expression of Mdc1 and 53BP1. DNA Repair 6:1243–1254

    PubMed  CAS  Google Scholar 

  • Ahmed EA, Philippens ME, Kal HB, de Rooij DG, de Boer P (2010) Genetic probing of homologous recombination and non-homologous end joining during meiotic prophase in irradiated mouse spermatocytes. Mutat Res 688:12–8

    PubMed  CAS  Google Scholar 

  • Baarends WM, Hoogerbrugge JW, Roest HP et al (1999) Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207:322–333

    PubMed  CAS  Google Scholar 

  • Baarends WM, Wassenaar E, van der Laan R et al (2005) Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25:1041–1053

    PubMed  CAS  Google Scholar 

  • Baarends WM, Wassenaar E, Hoogerbrugge JW et al (2007) Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome. J Cell Sci 120:1841–1851

    PubMed  CAS  Google Scholar 

  • Baart EB, de Rooij DG, Keegan KS et al (2000) Distribution of Atr protein in primary spermatocytes of a mouse chromosomal mutant: a comparison of preparation techniques. Chromosoma 109:139–147

    PubMed  CAS  Google Scholar 

  • Bachtrog D (2006) A dynamic view of sex chromosome evolution. Curr Opin Genet Dev 16:578–585

    PubMed  CAS  Google Scholar 

  • Barchi M, Mahadevaiah S, Di Giacomo M et al (2005) Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol Cell Biol 25:7203–7215

    PubMed  CAS  Google Scholar 

  • Baudat F, Manova K, Yuen JP et al (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell 6:989–998

    PubMed  CAS  Google Scholar 

  • Bellani MA, Romanienko PJ, Cairatti DA et al (2005) SPO11 is required for sex-body formation, and Spo11 heterozygosity rescues the prophase arrest of Atm−/− spermatocytes. J Cell Sci 118:3233–3245

    PubMed  CAS  Google Scholar 

  • Bergero R, Charlesworth D (2009) The evolution of restricted recombination in sex chromosomes. Trends Ecol Evol 24:94–102

    PubMed  Google Scholar 

  • Bhalla N, Dernburg AF (2008) Prelude to a division. Annu Rev Cell Dev Biol 24:397–424

    PubMed  CAS  Google Scholar 

  • Bishop DK, Park D, Xu L et al (1992) DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456

    PubMed  CAS  Google Scholar 

  • Bolcun-Filas E, Costa Y, Speed R et al (2007) SYCE2 is required for synaptonemal complex assembly, double strand break repair, and homologous recombination. J Cell Biol 176:741–747

    PubMed  CAS  Google Scholar 

  • Borde V, Cobb J (2009) Double functions for the Mre11 complex during DNA double-strand break repair and replication. Int J Biochem Cell Biol 41:1249–1253

    PubMed  CAS  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349:38–44

    PubMed  CAS  Google Scholar 

  • Brown PW, Judis L, Chan ER et al (2005) Meiotic synapsis proceeds from a limited number of subtelomeric sites in the human male. Am J Hum Genet 77:556–566

    PubMed  CAS  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2007) The management of DNA double-strand breaks in mitotic G2, and in mammalian meiosis viewed from a mitotic G2 perspective. Bioessays 29: 974–986

    PubMed  CAS  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10:207–216

    PubMed  CAS  Google Scholar 

  • Carballo JA, Johnson AL, Sedgwick SG et al (2008) Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132:758–770

    PubMed  CAS  Google Scholar 

  • Carrel L, Willard HF (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434:400–404

    PubMed  CAS  Google Scholar 

  • Chandley AC, Goetz P, Hargreave TB, Joseph AM, Speed RM (1984) On the nature and extent of XY pairing at meiotic prophase in man. Cytogenet Cell Genet 38:241–247

    PubMed  CAS  Google Scholar 

  • Chen J, Silver DP, Walpita D, Cantor SB, Gazdar AF, Tomlinson G, Couch FJ, Weber BL, Ashley T, Livingston DM, Scully R (1998) Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol Cell 2:317–328

    PubMed  CAS  Google Scholar 

  • Cocquet J, Ellis PJ, Yamauchi Y et al (2009) The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol 7:e1000244

    PubMed  Google Scholar 

  • Costa Y, Cooke HJ (2007) Dissecting the mammalian synaptonemal complex using targeted mutations. Chromosome Res 15:579–589

    PubMed  CAS  Google Scholar 

  • Dantzer F, Mark M, Quenet D et al (2006) Poly(ADP-ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci USA 103:14854–14859

    PubMed  CAS  Google Scholar 

  • de Boer P, Giele M, Lock MT, de Rooij DG, Giltay J, Hochstenbach R, te Velde ER (2004) Kinetics of meiosis in azoospermic males: a joint histological and cytological approach. Cytogenet Genome Res 105:36–46

    Google Scholar 

  • de Vries FA, de Boer E, van den Bosch M et al (2005) Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev 19:1376–1389

    PubMed  Google Scholar 

  • Di Giacomo M, Barchi M, Baudat F et al (2005) Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants. Proc Natl Acad Sci USA 102:737–742

    PubMed  Google Scholar 

  • Ding DQ, Yamamoto A, Haraguchi T et al (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6:329–341

    PubMed  CAS  Google Scholar 

  • Ding X, Xu R, Yu J et al (2007) SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–872

    PubMed  CAS  Google Scholar 

  • Eijpe M, Offenberg H, Jessberger R et al (2003) Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 160:657–670

    PubMed  CAS  Google Scholar 

  • Ellis PJ, Clemente EJ, Ball P et al (2005) Deletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids. Hum Mol Genet 14:2705–2715

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A et al (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    PubMed  CAS  Google Scholar 

  • Freire R, Murguia JR, Tarsounas M, Lowndes NF, Moens PB, Jackson SP (1998) Human and mouse homologs of Schizosaccharomyces pombe rad1(+) and Saccharomyces cerevisiae RAD17: linkage to checkpoint control and mammalian meiosis. Genes Dev 12:2560–2573

    PubMed  CAS  Google Scholar 

  • Fukuda T, Daniel K, Wojtasz L, Toth A, Hoog C (2009) A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp Cell Res 316:158–171

    PubMed  Google Scholar 

  • Garcia-Cruz R, Roig I, Robles P et al (2009) ATR, BRCA1 and gammaH2AX localize to unsynapsed chromosomes at the pachytene stage in human oocytes. Reprod Biomed Online 18:37–44

    PubMed  CAS  Google Scholar 

  • Goedecke W, Eijpe M, Offenberg HH et al (1999) Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23:194–198

    PubMed  CAS  Google Scholar 

  • Graves JA (2006) Sex chromosome specialization and degeneration in mammals. Cell 124:901–914

    PubMed  Google Scholar 

  • Haaf T, Golub EI, Reddy G et al (1995) Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci USA 92:2298–2302

    PubMed  CAS  Google Scholar 

  • Hamer G, Novak I, Kouznetsova A et al (2008) Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology 69:333–339

    PubMed  CAS  Google Scholar 

  • Handley LJ, Ceplitis H, Ellegren H (2004) Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 167:367–376

    PubMed  Google Scholar 

  • Helena Mangs A, Morris BJ (2007) The human pseudoautosomal region (PAR): origin, function and future. Curr Genomics 8:129–136

    PubMed  CAS  Google Scholar 

  • Hendriksen PJ, Hoogerbrugge JW, Themmen AP et al (1995) Postmeiotic transcription of X and Y chromosomal genes during spermatogenesis in the mouse. Dev Biol 170:730–733

    PubMed  CAS  Google Scholar 

  • Heyting C (1996) Synaptonemal complexes: structure and function. Curr Opin Cell Biol 8:389–396

    PubMed  CAS  Google Scholar 

  • Hochwagen A, Amon A (2006) Checking your breaks: surveillance mechanisms of meiotic recombination. Curr Biol 16:R217–R228

    PubMed  CAS  Google Scholar 

  • Hoege C, Pfander B, Moldovan GL et al (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141

    PubMed  CAS  Google Scholar 

  • Hunt PA, Hassold TJ (2002) Sex matters in meiosis. Science 296:2181–2183

    PubMed  CAS  Google Scholar 

  • Homolka D, Ivanek R, Capkova J et al (2007) Chromosomal rearrangement interferes with meiotic X chromosome inactivation. Genome Res 17:1431–1437

    PubMed  CAS  Google Scholar 

  • Hughes JF, Skaletsky H, Pyntikova T et al (2005) Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee. Nature 437:100–103

    PubMed  Google Scholar 

  • Hughes JF, Skaletsky H, Pyntikova T et al (2010) Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463(7280):536–539

    PubMed  CAS  Google Scholar 

  • Huynh KD, Lee JT (2003) Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos. Nature 426:857–862

    PubMed  CAS  Google Scholar 

  • International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716

    Google Scholar 

  • Jablonka E, Lamb MJ (1988) Meiotic pairing constraints and the activity of sex chromosomes. J Theor Biol 133:23–36

    PubMed  CAS  Google Scholar 

  • Kalz-Fuller B, Sleegers E, Schwanitz G et al (1999) Characterisation, phenotypic manifestations and X-inactivation pattern in 14 patients with X-autosome translocations. Clin Genet 55:362–366

    PubMed  CAS  Google Scholar 

  • Keegan KS, Holtzman DA, Plug AW et al (1996) The Atr and Atm protein kinases associate with different sites along meiotically pairing chromosomes. Genes Dev 10:2423–2437

    PubMed  CAS  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    PubMed  CAS  Google Scholar 

  • Khalil AM, Driscoll DJ (2006) Histone H3 lysine 4 dimethylation is enriched on the inactive sex chromosomes in male meiosis but absent on the inactive X in female somatic cells. Cytogenet Genome Res 112:11–15

    PubMed  CAS  Google Scholar 

  • Khil PP, Smirnova NA, Romanienko PJ et al (2004) The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat Genet 36:642–646

    PubMed  CAS  Google Scholar 

  • Khil PP, Oliver B, Camerini-Otero RD (2005) X for intersection: retrotransposition both on and off the X chromosome is more frequent. Trends Genet 21:3–7

    PubMed  CAS  Google Scholar 

  • Kim J, Guermah M, McGinty RK et al (2009) RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 137:459–471

    PubMed  CAS  Google Scholar 

  • Kinebuchi T, Kagawa W, Enomoto R et al (2004) Structural basis for octameric ring formation and DNA interaction of the human homologous-pairing protein Dmc1. Mol Cell 14:363–374

    PubMed  CAS  Google Scholar 

  • Koken MH, Reynolds P, Jaspers-Dekker I et al (1991) Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci USA 88:8865–8869

    PubMed  CAS  Google Scholar 

  • Koopman P, Gubbay J, Vivian N et al (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121

    PubMed  CAS  Google Scholar 

  • Lachner M, O’Carroll D, Rea S et al (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120

    PubMed  CAS  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967

    PubMed  CAS  Google Scholar 

  • Lange J, Skaletsky H, van Daalen SK et al (2009) Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138:855–869

    PubMed  CAS  Google Scholar 

  • Leng M, Li G, Zhong L et al (2009) Abnormal synapses and recombination in an azoospermic male carrier of a reciprocal translocation t(1;21). Fertil Steril 91(1293):e1217–e1222

    Google Scholar 

  • Lin H, Gupta V, Vermilyea MD et al (2007) Dosage compensation in the mouse balances up-regulation and silencing of X-linked genes. PLoS Biol 5:e326

    PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    PubMed  CAS  Google Scholar 

  • Ma S, Yuen BH, Penaherrera M et al (2003) ICSI and the transmission of X-autosomal translocation: a three-generation evaluation of X;20 translocation: case report. Hum Reprod 18:1377–1382

    PubMed  Google Scholar 

  • MacQueen AJ, Phillips CM, Bhalla N et al (2005) Chromosome sites play dual roles to establish homologous synapsis during meiosis in C. elegans. Cell 123:1037–1050

    PubMed  CAS  Google Scholar 

  • Madan K (1983) Balanced structural changes involving the human X: effect on sexual phenotype. Hum Genet 63:216–221

    PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F et al (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Bourc’his D, de Rooij DG et al (2008) Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation. J Cell Biol 182:263–276

    PubMed  CAS  Google Scholar 

  • Marahrens Y, Panning B, Dausman J et al (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166

    PubMed  CAS  Google Scholar 

  • Metzler-Guillemain C, Usson Y, Mignon C et al (2000) Organization of the X and Y chromosomes in human, chimpanzee and mouse pachytene nuclei using molecular cytogenetics and three-dimensional confocal analyses. Chromosome Res 8:571–584

    PubMed  CAS  Google Scholar 

  • Milman N, Higuchi E, Smith GR (2009) Meiotic DNA double-strand break repair requires two nucleases, MRN and Ctp1, to produce a single size class of Rec12 (Spo11)-oligonucleotide complexes. Mol Cell Biol 29:5998–6005

    PubMed  CAS  Google Scholar 

  • Moens PB, Chen DJ, Shen Z et al (1997) Rad51 immunocytology in rat and mouse spermatocytes and oocytes. Chromosoma 106:207–215

    PubMed  CAS  Google Scholar 

  • Moens PB, Tarsounas M, Morita T et al (1999) The association of ATR protein with mouse meiotic chromosome cores. Chromosoma 108:95–102

    PubMed  CAS  Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M et al (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    PubMed  CAS  Google Scholar 

  • Morelli MA, Cohen PE (2005) Not all germ cells are created equal: aspects of sexual dimorphism in mammalian meiosis. Reproduction 130:761–781

    PubMed  CAS  Google Scholar 

  • Moses MJ, Poorman PA (1981) Synaptosomal complex analysis of mouse chromosomal rearrangements. II. Synaptic adjustment in a tandem duplication. Chromosoma 81:519–535

    PubMed  CAS  Google Scholar 

  • Mueller JL, Mahadevaiah SK, Park PJ et al (2008) The mouse X chromosome is enriched for multicopy testis genes showing postmeiotic expression. Nat Genet 40:794–799

    PubMed  CAS  Google Scholar 

  • Namekawa SH, Park PJ, Zhang LF et al (2006) Postmeiotic sex chromatin in the male germline of mice. Curr Biol 16:660–667

    PubMed  CAS  Google Scholar 

  • Neale MJ, Keeney S (2006) Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442:153–158

    PubMed  CAS  Google Scholar 

  • Neale MJ, Pan J, Keeney S (2005) Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057

    PubMed  CAS  Google Scholar 

  • Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53

    PubMed  CAS  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin

    Google Scholar 

  • Okamoto I, Arnaud D, Le Baccon P et al (2005) Evidence for de novo imprinted X-chromosome inactivation independent of meiotic inactivation in mice. Nature 438:369–373

    PubMed  CAS  Google Scholar 

  • Payer B, Lee JT (2008) X chromosome dosage compensation: how mammals keep the balance. Annu Rev Genet 42:733–772

    PubMed  CAS  Google Scholar 

  • Penny GD, Kay GF, Sheardown SA et al (1996) Requirement for Xist in X chromosome inactivation. Nature 379:131–137

    PubMed  CAS  Google Scholar 

  • Perera D, Perez-Hidalgo L, Moens PB, Reini K, Lakin N, Syvaoja JE, San-Segundo PA, Freire R (2004) TopBP1 and ATR colocalization at meiotic chromosomes: role of TopBP1/Cut5 in the meiotic recombination checkpoint. Mol Biol Cell 15:1568–1579

    PubMed  CAS  Google Scholar 

  • Peters AH, Plug AW, de Boer P (1997) Meiosis in carriers of heteromorphic bivalents: sex differences and implications for male fertility. Chromosome Res 5:313–324

    PubMed  CAS  Google Scholar 

  • Pittman DL, Cobb J, Schimenti KJ et al (1998) Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell 1:697–705

    PubMed  CAS  Google Scholar 

  • Plath K, Fang J, Mlynarczyk-Evans SK et al (2003) Role of histone H3 lysine 27 methylation in X inactivation. Science 300:131–135

    PubMed  CAS  Google Scholar 

  • Rastan S (1983) Non-random X-chromosome inactivation in mouse X-autosome translocation embryos–location of the inactivation centre. J Embryol Exp Morphol 78:1–22

    PubMed  CAS  Google Scholar 

  • Reini K, Uitto L, Perera D, Moens PB, Freire R, Syvaoja JE (2004) TopBP1 localises to centrosomes in mitosis and to chromosome cores in meiosis. Chromosoma 112:323–330

    PubMed  CAS  Google Scholar 

  • Revenkova E, Eijpe M, Heyting C et al (2004) Cohesin SMC1 beta is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol 6:555–562

    PubMed  CAS  Google Scholar 

  • Roest HP, van Klaveren J, de Wit J et al (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86:799–810

    PubMed  CAS  Google Scholar 

  • Roest HP, Baarends WM, de Wit J et al (2004) The ubiquitin-conjugating DNA repair enzyme HR6A is a maternal factor essential for early embryonic development in mice. Mol Cell Biol 24:5485–5495

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Boon C, Redon C et al (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146:905–916

    PubMed  CAS  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H, Marszalek JD et al (2003) Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 423:873–876

    PubMed  CAS  Google Scholar 

  • Schimenti J (2005) Synapsis or silence. Nat Genet 37:11–13

    PubMed  CAS  Google Scholar 

  • Schoenmakers S, Wassenaar E, van Cappellen WA et al (2008) Increased frequency of asynapsis and associated meiotic silencing of heterologous chromatin in the presence of irradiation-induced extra DNA double strand breaks. Dev Biol 317:270–281

    PubMed  CAS  Google Scholar 

  • Schoenmakers S, Wassenaar E, Hoogerbrugge JW et al (2009) Female meiotic sex chromosome inactivation in chicken. PLoS Genet 5:e1000466

    PubMed  Google Scholar 

  • Schwacha A, Kleckner N (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63

    PubMed  CAS  Google Scholar 

  • Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275

    PubMed  CAS  Google Scholar 

  • Silva J, Mak W, Zvetkova I et al (2003) Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell 4:481–495

    PubMed  CAS  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    PubMed  CAS  Google Scholar 

  • Solari AJ (1974) The behavior of the XY pair in mammals. Int Rev Cytol 38:273–317

    PubMed  CAS  Google Scholar 

  • Song R, Ro S, Michaels JD et al (2009) Many X-linked microRNAs escape meiotic sex chromosome inactivation. Nat Genet 41:488–493

    PubMed  CAS  Google Scholar 

  • Sung P, Prakash S, Prakash L (1988) The RAD6 protein of Saccharomyces cerevisiae polyubiquitinates histones, and its acidic domain mediates this activity. Genes Dev 2:1476–1485

    PubMed  CAS  Google Scholar 

  • Tarsounas M, Morita T, Pearlman RE et al (1999) RAD51 and DMC1 form mixed complexes associated with mouse meiotic chromosome cores and synaptonemal complexes. J Cell Biol 147:207–220

    PubMed  CAS  Google Scholar 

  • Tres LL (1977) Extensive pairing of the XY bivalent in mouse spermatocytes as visualized by whole-mount electron microscopy. J Cell Sci 25:1–15

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Elliott DJ et al (2002) Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J Cell Sci 115:4097–4105

    PubMed  CAS  Google Scholar 

  • Turner JM, Aprelikova O, Xu X et al (2004) BRCA1, histone H2AX phosphorylation, and male meiotic sex chromosome inactivation. Curr Biol 14:2135–2142

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O et al (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Ellis PJ et al (2006) Pachytene asynapsis drives meiotic sex chromosome inactivation and leads to substantial postmeiotic repression in spermatids. Dev Cell 10:521–529

    PubMed  CAS  Google Scholar 

  • van den Berg IM, Laven JS, Stevens M et al (2009) X chromosome inactivation is initiated in human preimplantation embryos. Am J Hum Genet 84:771–779

    PubMed  Google Scholar 

  • van der Heijden GW, Derijck AA, Posfai E et al (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258

    PubMed  Google Scholar 

  • van der Laan R, Uringa EJ, Wassenaar E et al (2004) Ubiquitin ligase Rad18Sc localizes to the XY body and to other chromosomal regions that are unpaired and transcriptionally silenced during male meiotic prophase. J Cell Sci 117:5023–5033

    PubMed  Google Scholar 

  • Vigodner M, Morris PL (2005) Testicular expression of small ubiquitin-related modifier-1 (SUMO-1) supports multiple roles in spermatogenesis: silencing of sex chromosomes in spermatocytes, spermatid microtubule nucleation, and nuclear reshaping. Dev Biol 282:480–492

    PubMed  CAS  Google Scholar 

  • Walpita D, Plug AW, Neff NF, German J, Ashley T (1999) Bloom's syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc Natl Acad Sci USA 96:5622–5627

    PubMed  CAS  Google Scholar 

  • Wang H, Hoog C (2006) Structural damage to meiotic chromosomes impairs DNA recombination and checkpoint control in mammalian oocytes. J Cell Biol 173: 485–495

    PubMed  CAS  Google Scholar 

  • Wang PJ (2004) X chromosomes, retrogenes and their role in male reproduction. Trends Endocrinol Metab 15:79–83

    PubMed  Google Scholar 

  • Wang PJ, McCarrey JR, Yang F et al (2001) An abundance of X-linked genes expressed in spermatogonia. Nat Genet 27:422–426

    PubMed  Google Scholar 

  • Williams RS, Dodson GE, Limbo O et al (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99

    PubMed  CAS  Google Scholar 

  • Wojtasz L, Daniel K, Roig I et al (2009) Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet 5:e1000702

    PubMed  Google Scholar 

  • Xin H, Lin W, Sumanasekera W et al (2000) The human RAD18 gene product interacts with HHR6A and HHR6B. Nucleic Acids Res 28:2847–2854

    PubMed  CAS  Google Scholar 

  • Xu H, Beasley MD, Warren WD et al (2005) Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev Cell 8:949–961

    PubMed  CAS  Google Scholar 

  • Yang F, De La Fuente R, Leu NA et al (2006) Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol 173:497–507

    PubMed  CAS  Google Scholar 

  • Yoshida K, Kondoh G, Matsuda Y et al (1998) The mouse RecA-like gene Dmc1 is required for homologous chromosome synapsis during meiosis. Mol Cell 1:707–718

    PubMed  CAS  Google Scholar 

  • Yuan L, Liu JG, Zhao J et al (2000) The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol Cell 5:73–83

    PubMed  CAS  Google Scholar 

  • Yuan L, Liu JG, Hoja MR, Wilbertz J, Nordqvist K, Hoog C (2002) Female germ cell aneuploidy and embryo death in mice lacking the meiosis-specific protein SCP3. Science 296: 1115–1158

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy M. Baarends .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Schoenmakers, S., Baarends, W.M. (2011). Meiotic Pairing of Homologous Chromosomes and Silencing of Heterologous Regions. In: Rousseaux, S., Khochbin, S. (eds) Epigenetics and Human Reproduction. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14773-9_7

Download citation

Publish with us

Policies and ethics