Skip to main content

Epigenetic Factors and Regulation of Meiotic Recombination in Mammals

  • Chapter
  • First Online:

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

During meiosis, recombination is induced to promote connections between homologous chromosomes, thereby ensuring faithful chromosome segregation. These connections result from reciprocal recombination events or crossovers. Absence or defects of recombination can lead to genome instability, chromosome nondisjunction, aneuploid gametes, or reduced fertility. Recombination events are therefore highly regulated through mechanisms that are still poorly understood. The role of epigenetic modifications in meiotic recombination is suggested by several observations, particularly by the differences between male and female recombination as well as by interindividual variations in crossover rates. In this review, we describe features of meiotic recombination that might involve epigenetic controls. We then present the epigenetic marks and modifiers known to occur or to play a role during meiotic prophase when recombination takes place. Direct evidence of a functional link between histone modifications and recombination is highlighted by a recent analysis of the distribution of recombination showing that the protein PRDM9 targets chromatin modifications to specific sites in the genome where initiation of meiotic recombination takes place.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Chr:

Chromosome

cM:

Centi morgan

CO:

Crossover

DNMT:

DNA (cytosine-5)-methyltransferase

DSB:

DNA double-strand break

FISH:

Fluorescent in situ hybridization

HAT:

Histone acetyl-transferase

HDAC:

Histone deacetylase

HDMT:

Histone demethylase

Histone modifications:

Example H3K4Me3 is histone H3 with tri-methylated lysine 4

HJ:

Holliday junction

HMT:

Histone methyl-transferase

Hp1:

Heterochromatin protein 1

IAP:

Intracisternal A particle

JMJD1a:

Jumonji domain-containing histone demethylase 1a

KO:

Knock-out

LD:

Linkage disequilibrium

LINE:

Long interspersed element

MAEL:

Maelstrom

MSCI:

Meiotic sex chromosome inactivation

Msuc:

Meiotic silencing of unsynapsed chromatin

NCO:

Non crossover

PiRNA:

Piwi-interacting RNA

SC:

Synaptonemal complex

SEI:

Single end invasion

SNP:

Single nucleotide polymorphism

TSA:

Trichostatin A

References

  • Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    PubMed  CAS  Google Scholar 

  • Arnheim N, Calabrese P, Tiemann-Boege I (2007) Mammalian meiotic recombination hot spots. Annu Rev Genet 41:369–399

    PubMed  CAS  Google Scholar 

  • Baarends WM, Grootegoed JA (2003) Chromatin dynamics in the male meiotic prophase. Cytogenet Genome Res 103:225–234

    PubMed  CAS  Google Scholar 

  • Baarends WM, Wassenaar E, Hoogerbrugge JW, van Cappellen G, Roest HP, Vreeburg J, Ooms M, Hoeijmakers JH, Grootegoed JA (2003) Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase. Mol Cell Biol 23:1151–1162

    PubMed  CAS  Google Scholar 

  • Baarends WM, Wassenaar E, van der Laan R, Hoogerbrugge J, Sleddens-Linkels E, Hoeijmakers JH, de Boer P, Grootegoed JA (2005) Silencing of unpaired chromatin and histone H2A ubiquitination in mammalian meiosis. Mol Cell Biol 25:1041–1053

    PubMed  CAS  Google Scholar 

  • Barlow AL, Hulten MA (1998) Crossing over analysis at pachytene in man. Eur J Hum Genet 6:350–358

    PubMed  CAS  Google Scholar 

  • Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de Massy B (2010) PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 327(5967):836–840

    PubMed  CAS  Google Scholar 

  • Baudat F, de Massy B (2007a) Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot. PLoS Genet 3:e100

    PubMed  Google Scholar 

  • Baudat F, de Massy B (2007b) Regulating double-stranded DNA break repair towards crossover or non-crossover during mammalian meiosis. Chromosome Res 15:565–577

    PubMed  CAS  Google Scholar 

  • Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking spo11. Mol Cell 6:989–998

    PubMed  CAS  Google Scholar 

  • Bayes JJ, Malik HS (2009) Altered heterochromatin binding by a hybrid sterility protein in Drosophila sibling species. Science 326:1538–1541

    PubMed  CAS  Google Scholar 

  • Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386:414–417 (see comments)

    PubMed  CAS  Google Scholar 

  • Borde V, Robine N, Lin W, Bonfils S, Geli V, Nicolas A (2009) Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites. EMBO J 28:99–111

    PubMed  CAS  Google Scholar 

  • Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    PubMed  Google Scholar 

  • Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH (2001) Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539

    PubMed  Google Scholar 

  • Bramlage B, Kosciessa U, Doenecke D (1997) Differential expression of the murine histone genes H3.3A and H3.3B. Differentiation 62:13–20

    PubMed  CAS  Google Scholar 

  • Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63:861–869

    PubMed  CAS  Google Scholar 

  • Buard J, Barthes P, Grey C, de Massy B (2009) Distinct histone modifications define initiation and repair of meiotic recombination in the mouse. EMBO J 28:2616–2624

    PubMed  CAS  Google Scholar 

  • Buard J, de Massy B (2007) Playing hide and seek with mammalian meiotic crossover hotspots. Trends Genet 23:301–309

    PubMed  CAS  Google Scholar 

  • Buard J, Shone AC, Jeffreys AJ (2000) Meiotic recombination and flanking marker exchange at the highly unstable human minisatellite CEB1 (D2S90). Am J Hum Genet 67:333–344

    PubMed  CAS  Google Scholar 

  • Burgoyne PS, Mahadevaiah SK, Turner JM (2009) The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 10:207–216

    PubMed  CAS  Google Scholar 

  • Carmell MA, Girard A, van de Kant HJ, Bourc’his D, Bestor TH, de Rooij DG, Hannon GJ (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    PubMed  CAS  Google Scholar 

  • Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296:922–927

    PubMed  CAS  Google Scholar 

  • Cheng EY, Hunt PA, Naluai-Cecchini TA, Fligner CL, Fujimoto VY, Pasternack TL, Schwartz JM, Steinauer JE, Woodruff TJ, Cherry SM, Hansen TA, Vallente RU, Broman KW, Hassold TJ (2009) Meiotic recombination in human oocytes. PLoS Genet 5:e1000661

    PubMed  Google Scholar 

  • Cheung VG, Burdick JT, Hirschmann D, Morley M (2007) Polymorphic variation in human meiotic recombination. Am J Hum Genet 80:526–530

    PubMed  CAS  Google Scholar 

  • Chowdhury R, Bois PR, Feingold E, Sherman SL, Cheung VG (2009) Genetic analysis of variation in human meiotic recombination. PLoS Genet 5:e1000648

    PubMed  Google Scholar 

  • Clarke HJ, McLay DW, Mohamed OA (1998) Linker histone transitions during mammalian oogenesis and embryogenesis. Dev Genet 22:17–30

    PubMed  CAS  Google Scholar 

  • Coop G, Przeworski M (2007) An evolutionary view of human recombination. Nat Rev Genet 8:23–34

    PubMed  CAS  Google Scholar 

  • Coop G, Wen X, Ober C, Pritchard JK, Przeworski M (2008) High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319:1395–1398

    PubMed  CAS  Google Scholar 

  • Cox A, Ackert-Bicknell C, Dumont BL, Ding Y, Tzenova Bell J, Brockmann GA, Wergedal JE, Bult C, Paigen B, Flint J, Tsaih SW, Churchill GA, Broman KW (2009) A new standard genetic map for the mouse. Genetics 182(4):1335–1344

    PubMed  CAS  Google Scholar 

  • de Boer E, Stam P, Dietrich AJ, Pastink A, Heyting C (2006) Two levels of interference in mouse meiotic recombination. Proc Natl Acad Sci USA 103:9607–9612

    PubMed  Google Scholar 

  • de Massy B (2003) Distribution of meiotic recombination sites. Trends Genet 19:514–522

    PubMed  Google Scholar 

  • de Massy B, Rocco V, Nicolas A (1995) The nucleotide mapping of DNA double-strand breaks at the CYS3 initiation site of meiotic recombination in Saccharomyces cerevisiae. EMBO J 14:4589–4598

    PubMed  Google Scholar 

  • Delaval K, Feil R (2004) Epigenetic regulation of mammalian genomic imprinting. Curr Opin Genet Dev 14:188–195

    PubMed  CAS  Google Scholar 

  • Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830

    PubMed  CAS  Google Scholar 

  • Diaz RL, Alcid AD, Berger JM, Keeney S (2002) Identification of residues in yeast spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 22:1106–1115

    PubMed  CAS  Google Scholar 

  • Fantz DA, Hatfield WR, Horvath G, Kistler MK, Kistler WS (2001) Mice with a targeted disruption of the H1t gene are fertile and undergo normal changes in structural chromosomal proteins during spermiogenesis. Biol Reprod 64:425–431

    PubMed  CAS  Google Scholar 

  • Fearnhead P, Harding RM, Schneider JA, Myers S, Donnelly P (2004) Application of coalescent methods to reveal fine-scale rate variation and recombination hotspots. Genetics 167:2067–2081

    PubMed  CAS  Google Scholar 

  • Fenic I, Sonnack V, Failing K, Bergmann M, Steger K (2004) In vivo effects of histone-deacetylase inhibitor trichostatin-a on murine spermatogenesis. J Androl 25:811–818

    PubMed  CAS  Google Scholar 

  • Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508

    PubMed  CAS  Google Scholar 

  • Franklin SG, Zweidler A (1977) Non-allelic variants of histones 2a, 2b and 3 in mammals. Nature 266:273–275

    PubMed  CAS  Google Scholar 

  • Fu F, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, Miller L, Voytas DF (2009) Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res 37:D279–D283

    PubMed  CAS  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202

    PubMed  Google Scholar 

  • Godmann M, Auger V, Ferraroni-Aguiar V, Di Sauro A, Sette C, Behr R, Kimmins S (2007) Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol Reprod 77:754–764

    PubMed  CAS  Google Scholar 

  • Godmann M, Lambrot R, Kimmins S (2009) The dynamic epigenetic program in male germ cells: its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech 72:603–619

    PubMed  CAS  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    PubMed  CAS  Google Scholar 

  • Grey C, Baudat F, de Massy B (2009) Genome-wide control of the distribution of meiotic recombination. PLoS Biol 7:e35

    PubMed  Google Scholar 

  • Grivna ST, Pyhtila B, Lin H (2006) MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci USA 103:13415–13420

    PubMed  CAS  Google Scholar 

  • Grunau C, Buard J, Brun ME, De Sario A (2006) Mapping of the juxtacentromeric heterochromatin-euchromatin frontier of human chromosome 21. Genome Res 16:1198–1207

    PubMed  CAS  Google Scholar 

  • Guillon H, Baudat F, Grey C, Liskay RM, de Massy B (2005) Crossover and noncrossover pathways in mouse meiosis. Mol Cell 20:563–573

    PubMed  CAS  Google Scholar 

  • Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11(2):124–136

    PubMed  CAS  Google Scholar 

  • Hata K, Kusumi M, Yokomine T, Li E, Sasaki H (2006) Meiotic and epigenetic aberrations in Dnmt3L-deficient male germ cells. Mol Reprod Dev 73:116–122

    PubMed  CAS  Google Scholar 

  • Hayashi K, Yoshida K, Matsui Y (2005) A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 438:374–378

    PubMed  CAS  Google Scholar 

  • Hendzel MJ, Lever MA, Crawford E, Th’ng JP (2004) The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem 279:20028–20034

    PubMed  CAS  Google Scholar 

  • Hirota K, Mizuno K, Shibata T, Ohta K (2008) Distinct chromatin modulators regulate the formation of accessible and repressive chromatin at the fission yeast recombination hotspot ade6-M26. Mol Biol Cell 19:1162–1173

    PubMed  CAS  Google Scholar 

  • Hoog C, Schalling M, Grunder-Brundell E, Daneholt B (1991) Analysis of a murine male germ cell-specific transcript that encodes a putative zinc finger protein. Mol Reprod Dev 30:173–181

    PubMed  CAS  Google Scholar 

  • Hunter N (2007) Meiotic recombination. In: Aguilera A, Rothstein R (eds) Molecular genetics of recombination. Springer, Berlin, pp 381–442

    Google Scholar 

  • Irie S, Tsujimura A, Miyagawa Y, Ueda T, Matsuoka Y, Matsui Y, Okuyama A, Nishimune Y, Tanaka H (2009) Single nucleotide polymorphisms in PRDM9 (MEISETZ) in patients with nonobstructive azoospermia. J Androl 30(4):426–431

    PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Kauppi L, Neumann R (2001) Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet 29:217–222

    PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Neumann R (2002) Reciprocal crossover asymmetry and meiotic drive in a human recombination hot spot. Nat Genet 31:267–271

    PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Neumann R (2005) Factors influencing recombination frequency and distribution in a human meiotic crossover hotspot. Hum Mol Genet 14:2277–2287

    PubMed  CAS  Google Scholar 

  • Jeffreys AJ, Neumann R (2009) The rise and fall of a human recombination hot spot. Nat Genet 41(5):625–629

    PubMed  CAS  Google Scholar 

  • Kaneda M, Sado T, Hata K, Okano M, Tsujimoto N, Li E, Sasaki H (2004) Role of de novo DNA methyltransferases in initiation of genomic imprinting and X-chromosome inactivation. Cold Spring Harb Symp Quant Biol 69:125–129

    PubMed  CAS  Google Scholar 

  • Keeney S, Giroux CN, Kleckner N (1997) Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384

    PubMed  CAS  Google Scholar 

  • Khadake JR, Rao MR (1995) DNA- and chromatin-condensing properties of rat testes H1a and H1t compared to those of rat liver H1bdec; H1t is a poor condenser of chromatin. Biochemistry 34:15792–15801

    PubMed  CAS  Google Scholar 

  • Khalil AM, Wahlestedt C (2008) Epigenetic mechanisms of gene regulation during mammalian spermatogenesis. Epigenetics 3:21–28

    PubMed  Google Scholar 

  • Kimmins S, Sassone-Corsi P (2005) Chromatin remodelling and epigenetic features of germ cells. Nature 434:583–589

    PubMed  CAS  Google Scholar 

  • Kleckner N, Storlazzi A, Zickler D (2003) Coordinate variation in meiotic pachytene SC length and total crossover/chiasma frequency under conditions of constant DNA length. Trends Genet 19:623–628

    PubMed  CAS  Google Scholar 

  • Kong A, Gudbjartsson DF, Sainz J, Jonsdottir GM, Gudjonsson SA, Richardsson B, Sigurdardottir S, Barnard J, Hallbeck B, Masson G, Shlien A, Palsson ST, Frigge ML, Thorgeirsson TE, Gulcher JR, Stefansson K (2002) A high-resolution recombination map of the human genome. Nat Genet 31:241–247

    PubMed  CAS  Google Scholar 

  • Kong A, Thorleifsson G, Stefansson H, Masson G, Helgason A, Gudbjartsson DF, Jonsdottir GM, Gudjonsson SA, Sverrisson S, Thorlacius T, Jonasdottir A, Hardarson GA, Palsson ST, Frigge ML, Gulcher JR, Thorsteinsdottir U, Stefansson K (2008) Sequence variants in the RNF212 gene associate with genomewide recombination rate. Science 319(5868):1398–1401

    PubMed  CAS  Google Scholar 

  • Kong X, Murphy K, Raj T, He C, White PS, Matise TC (2004) A combined linkage-physical map of the human genome. Am J Hum Genet 75:1143–1148

    PubMed  CAS  Google Scholar 

  • Kono T, Obata Y, Yoshimzu T, Nakahara T, Carroll J (1996) Epigenetic modifications during oocyte growth correlates with extended parthenogenetic development in the mouse. Nat Genet 13:91–94

    PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Kimura T, Ijiri TW, Isobe T, Asada N, Fujita Y, Ikawa M, Iwai N, Okabe M, Deng W, Lin H, Matsuda Y, Nakano T (2004) Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131:839–849

    PubMed  CAS  Google Scholar 

  • Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, Hata K, Li E, Matsuda Y, Kimura T, Okabe M, Sakaki Y, Sasaki H, Nakano T (2008) DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22:908–917

    PubMed  CAS  Google Scholar 

  • La Salle S, Oakes CC, Neaga OR, Bourc’his D, Bestor TH, Trasler JM (2007) Loss of spermatogonia and wide-spread DNA methylation defects in newborn male mice deficient in DNMT3L. BMC Dev Biol 7:104

    PubMed  Google Scholar 

  • La Salle S, Trasler JM (2006) Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse. Dev Biol 296:71–82

    PubMed  Google Scholar 

  • Lenzi ML, Smith J, Snowden T, Kim M, Fishel R, Poulos BK, Cohen PE (2005) Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis I in human oocytes. Am J Hum Genet 76:112–127

    PubMed  CAS  Google Scholar 

  • Lercher MJ, Hurst LD (2003) Imprinted chromosomal regions of the human genome have unusually high recombination rates. Genetics 165:1629–1632

    PubMed  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926

    PubMed  CAS  Google Scholar 

  • Lichten M (2008) Meiotic chromatin: the substrate for recombination initiation. In: Lankenau DK (ed) Genome dynamics and stability, vol 3. Springer, Berlin

    Google Scholar 

  • Liu J, Wu TC, Lichten M (1995) The location and structure of double-strand DNA breaks induced during yeast meiosis: evidence for a covalently linked DNA-protein intermediate. EMBO J 14:4599–4608

    PubMed  CAS  Google Scholar 

  • Lucifero D, Mertineit C, Clarke HJ, Bestor TH, Trasler JM (2002) Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79:530–538

    PubMed  CAS  Google Scholar 

  • Lynn A, Ashley T, Hassold T (2004) Variation in human meiotic recombination. Annu Rev Genomics Hum Genet 5:317–349

    PubMed  CAS  Google Scholar 

  • Lynn A, Koehler KE, Judis L, Chan ER, Cherry JP, Schwartz S, Seftel A, Hunt PA, Hassold TJ (2002) Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science 6:6

    Google Scholar 

  • Lynn A, Schrump S, Cherry J, Hassold T, Hunt P (2005) Sex, not genotype, determines recombination levels in mice. Am J Hum Genet 77:670–675

    PubMed  CAS  Google Scholar 

  • Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276

    PubMed  CAS  Google Scholar 

  • Maloisel L, Rossignol JL (1998) Suppression of crossing-over by DNA methylation in Ascobolus. Genes Dev 12:1381–1389

    PubMed  CAS  Google Scholar 

  • Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:2283–2287

    PubMed  CAS  Google Scholar 

  • Martini E, Diaz RL, Hunter N, Keeney S (2006) Crossover homeostasis in yeast meiosis. Cell 126:285–295

    PubMed  CAS  Google Scholar 

  • Matise TC, Chen F, Chen W, De La Vega FM, Hansen M, He C, Hyland FC, Kennedy GC, Kong X, Murray SS, Ziegle JS, Stewart WC, Buyske S (2007) A second-generation combined linkage physical map of the human genome. Genome Res 17:1783–1786

    PubMed  CAS  Google Scholar 

  • McDougall A, Elliott JE, Hunter N (2005) Meeting report. EMBO Rep 6:120–125

    PubMed  CAS  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 101:1525–1530

    PubMed  CAS  Google Scholar 

  • McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, Donnelly P (2004) The fine-scale structure of recombination rate variation in the human genome. Science 304:581–584

    PubMed  CAS  Google Scholar 

  • Merker JD, Dominska M, Greenwell PW, Rinella E, Bouck DC, Shibata Y, Strahl BD, Mieczkowski P, Petes TD (2008) The histone methylase Set2p and the histone deacetylase Rpd3p repress meiotic recombination at the HIS4 meiotic recombination hotspot in Saccharomyces cerevisiae. DNA Repair (Amst) 7(8):1298–1308

    CAS  Google Scholar 

  • Mets DG, Meyer BJ (2009) Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139:73–86

    PubMed  CAS  Google Scholar 

  • Mieczkowski PA, Dominska M, Buck MJ, Lieb JD, Petes TD (2007) Loss of a histone deacetylase dramatically alters the genomic distribution of Spo11p-catalyzed DNA breaks in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104:3955–3960

    PubMed  CAS  Google Scholar 

  • Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323:373–375

    PubMed  CAS  Google Scholar 

  • Miyamoto T, Koh E, Sakugawa N, Sato H, Hayashi H, Namiki M, Sengoku K (2008) Two single nucleotide polymorphisms in PRDM9 (MEISETZ) gene may be a genetic risk factor for Japanese patients with azoospermia by meiotic arrest. J Assist Reprod Genet 25:553–557

    PubMed  Google Scholar 

  • Myers S, Bottolo L, Freeman C, McVean G, Donnelly P (2005) A fine-scale map of recombination rates and hotspots across the human genome. Science 310:321–324

    PubMed  CAS  Google Scholar 

  • Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, Macfie TS, McVean G, Donnelly P (2010) Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 327(5967):876–879

    PubMed  CAS  Google Scholar 

  • Myers S, Freeman C, Auton A, Donnelly P, McVean G (2008) A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet 40:1124–1129

    PubMed  CAS  Google Scholar 

  • Neumann R, Jeffreys AJ (2006) Polymorphism in the activity of human crossover hotspots independent of local DNA sequence variation. Hum Mol Genet 15:1401–1411

    PubMed  CAS  Google Scholar 

  • Ohta K, Shibata T, Nicolas A (1994) Changes in chromatin structure at recombination initiation sites during yeast meiosis. EMBO J 13:5754–5763

    PubMed  CAS  Google Scholar 

  • Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450:119–123

    PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    PubMed  CAS  Google Scholar 

  • Oliver PL, Goodstadt L, Bayes JJ, Birtle Z, Roach KC, Phadnis N, Beatson SA, Lunter G, Malik HS, Ponting CP (2009) Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet 5:e1000753

    PubMed  Google Scholar 

  • Paigen K, Szatkiewicz JP, Sawyer K, Leahy N, Parvanov ED, Ng SH, Graber JH, Broman KW, Petkov PM (2008) The recombinational anatomy of a mouse chromosome. PLoS Genet 4:e1000119

    PubMed  Google Scholar 

  • Paldi A, Gyapay G, Jami J (1995) Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies. Curr Biol 5:1030–1035

    PubMed  CAS  Google Scholar 

  • Panning B, Jaenisch R (1996) DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev 10:1991–2002

    PubMed  CAS  Google Scholar 

  • Pardo-Manuel De Villena F, Sapienza C (2001) Recombination is proportional to the number of chromosome arms in mammals. Mamm Genome 12:318–322

    PubMed  CAS  Google Scholar 

  • Parvanov ED, Ng SH, Petkov PM, Paigen K (2009) Trans-regulation of mouse meiotic recombination hotspots by Rcr1. PLoS Biol 7:e36

    PubMed  Google Scholar 

  • Parvanov ED, Petkov PM, Paigen K (2010) Prdm9 controls activation of mammalian recombination hotspots. Science 327(5967):835

    PubMed  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    PubMed  CAS  Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nat Rev Genet 2:360–369

    PubMed  CAS  Google Scholar 

  • Petronczki M, Siomos MF, Nasmyth K (2003) Un Menage a Quatre. The molecular biology of chromosome segregation in meiosis. Cell 112:423–440

    PubMed  CAS  Google Scholar 

  • Phillips MS, Lawrence R, Sachidanandam R, Morris AP, Balding DJ, Donaldson MA, Studebaker JF, Ankener WM, Alfisi SV, Kuo FS, Camisa AL, Pazorov V, Scott KE, Carey BJ, Faith J, Katari G, Bhatti HA, Cyr JM, Derohannessian V, Elosua C, Forman AM, Grecco NM, Hock CR, Kuebler JM, Lathrop JA, Mockler MA, Nachtman EP, Restine SL, Varde SA, Hozza MJ, Gelfand CA, Broxholme J, Abecasis GR, Boyce-Jacino MT, Cardon LR (2003) Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nat Genet 33:382–387

    PubMed  CAS  Google Scholar 

  • Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127:481–493

    PubMed  CAS  Google Scholar 

  • Pradeepa MM, Rao MR (2007) Chromatin remodeling during mammalian spermatogenesis: role of testis specific histone variants and transition proteins. Soc Reprod Fertil Suppl 63:1–10

    PubMed  CAS  Google Scholar 

  • Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W (2002) Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169

    PubMed  CAS  Google Scholar 

  • Riches LC, Lynch AM, Gooderham NJ (2008) Early events in the mammalian response to DNA double-strand breaks. Mutagenesis 23:331–339

    PubMed  CAS  Google Scholar 

  • Roest HP, van Klaveren J, de Wit J, van Gurp CG, Koken MH, Vermey M, van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86:799–810

    PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868

    PubMed  CAS  Google Scholar 

  • Romanienko PJ, Camerini-Otero RD (2000) The mouse spo11 gene is required for meiotic chromosome synapsis. Mol Cell 6:975–987

    PubMed  CAS  Google Scholar 

  • Sakai Y, Suetake I, Shinozaki F, Yamashina S, Tajima S (2004) Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expr Patterns 5:231–237

    PubMed  CAS  Google Scholar 

  • Sandovici I, Kassovska-Bratinova S, Vaughan JE, Stewart R, Leppert M, Sapienza C (2006) Human imprinted chromosomal regions are historical hot-spots of recombination. PLoS Genet 2:e101

    PubMed  Google Scholar 

  • Schaefer M, Lyko F (2009) Solving the Dnmt2 enigma. Chromosoma 119(1):35–40

    Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    PubMed  CAS  Google Scholar 

  • Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, Mott R, Flint J (2006) A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 4:e395

    PubMed  Google Scholar 

  • Sollier J, Lin W, Soustelle C, Suhre K, Nicolas A, Geli V, de La Roche Saint-Andre C (2004) Set1 is required for meiotic S-phase onset, double-strand break formation and middle gene expression. EMBO J 23:1957–1967

    PubMed  CAS  Google Scholar 

  • Soper SF, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, Bortvin A (2008) Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 15:285–297

    PubMed  CAS  Google Scholar 

  • Stumpf MP, McVean GA (2003) Estimating recombination rates from population-genetic data. Nat Rev Genet 4:959–968

    PubMed  CAS  Google Scholar 

  • Svetlanov A, Baudat F, Cohen PE, de Massy B (2008) Distinct functions of MLH3 at recombination hot spots in the mouse. Genetics 178:1937–1945

    PubMed  CAS  Google Scholar 

  • Tachibana M, Nozaki M, Takeda N, Shinkai Y (2007) Functional dynamics of H3K9 methylation during meiotic prophase progression. EMBO J 26:3346–3359

    PubMed  CAS  Google Scholar 

  • Tadokoro Y, Yomogida K, Yagura Y, Yamada S, Okabe M, Nishimune Y (2003) Characterization of histone H2A.X expression in testis and specific labeling of germ cells at the commitment stage of meiosis with histone H2A.X promoter-enhanced green fluorescent protein transgene. Biol Reprod 11:11

    Google Scholar 

  • Tease C, Hartshorne GM, Hulten MA (2002) Patterns of meiotic recombination in human fetal oocytes. Am J Hum Genet 70:1469–1479

    PubMed  CAS  Google Scholar 

  • Trostle-Weige PK, Meistrich ML, Brock WA, Nishioka K (1984) Isolation and characterization of TH3, a germ cell-specific variant of histone 3 in rat testis. J Biol Chem 259:8769–8776

    PubMed  CAS  Google Scholar 

  • Turner JM, Mahadevaiah SK, Fernandez-Capetillo O, Nussenzweig A, Xu X, Deng CX, Burgoyne PS (2005) Silencing of unsynapsed meiotic chromosomes in the mouse. Nat Genet 37:41–47

    PubMed  CAS  Google Scholar 

  • Unni E, Mayerhofer A, Zhang Y, Bhatnagar YM, Russell LD, Meistrich ML (1995) Increased accessibility of the N-terminus of testis-specific histone TH2B to antibodies in elongating spermatids. Mol Reprod Dev 42:210–219

    PubMed  CAS  Google Scholar 

  • Vergnaud G, Denoeud F (2000) Minisatellites: mutability and genome architecture. Genome Res 10:899–907

    PubMed  CAS  Google Scholar 

  • Vergnaud G, Mariat D, Apiou F, Aurias A, Lathrop M, Lauthier V (1991) The use of synthetic tandem repeats to isolate new VNTR loci: cloning of a human hypermutable sequence. Genomics 11:135–144

    PubMed  CAS  Google Scholar 

  • Walsh CP, Bestor TH (1999) Cytosine methylation and mammalian development. Genes Dev 13: 26–34

    PubMed  CAS  Google Scholar 

  • Walsh CP, Chaillet JR, Bestor TH (1998) Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet 20:116–117

    PubMed  CAS  Google Scholar 

  • Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, Liu F, Taylor H, Lozach J, Jayes FL, Korach KS, Glass CK, Fu XD, Rosenfeld MG (2007) Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446:882–887

    PubMed  CAS  Google Scholar 

  • Webster KE, O’Bryan MK, Fletcher S, Crewther PE, Aapola U, Craig J, Harrison DK, Aung H, Phutikanit N, Lyle R, Meachem SJ, Antonarakis SE, de Kretser DM, Hedger MP, Peterson P, Carroll BJ, Scott HS (2005) Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci USA 102:4068–4073

    PubMed  CAS  Google Scholar 

  • Westphal T, Reuter G (2002) Recombinogenic effects of suppressors of position-effect variegation in Drosophila. Genetics 160:609–621

    PubMed  CAS  Google Scholar 

  • Wu T-C, Lichten M (1994) Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science 263:515–517

    PubMed  CAS  Google Scholar 

  • Xu D, Bai J, Duan Q, Costa M, Dai W (2009) Covalent modifications of histones during mitosis and meiosis. Cell Cycle 8(22):3688–3694

    PubMed  CAS  Google Scholar 

  • Yamada T, Mizuno KI, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K (2004) Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 23:1792–1803

    PubMed  CAS  Google Scholar 

  • Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495

    PubMed  CAS  Google Scholar 

  • Yamashita K, Shinohara M, Shinohara A (2004) Rad6-Bre1-mediated histone H2B ubiquitylation modulates the formation of double-strand breaks during meiosis. Proc Natl Acad Sci USA 101:11380–11385

    PubMed  CAS  Google Scholar 

  • Yoshida K, Yoshida SH, Shimoda C, Morita T (2003) Expression and radiation-induced phosphorylation of histone H2AX in mammalian cells. J Radiat Res (Tokyo) 44:47–51

    CAS  Google Scholar 

  • Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, Bradbury EM (2002) Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 277:43474–43480

    PubMed  CAS  Google Scholar 

  • Zamudio NM, Chong S, O’Bryan MK (2008) Epigenetic regulation in male germ cells. Reproduction 136:131–146

    PubMed  CAS  Google Scholar 

  • Zhang Y, Kwon S, Yamaguchi T, Cubizolles F, Rousseaux S, Kneissel M, Cao C, Li N, Cheng HL, Chua K, Lombard D, Mizeracki A, Matthias G, Alt FW, Khochbin S, Matthias P (2008) Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally. Mol Cell Biol 28:1688–1701

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank F. Baudat and C. Grey for discussions and comments on the manuscript. P. B is supported by a PhD grant from the French MENRT. This work was funded by grants from CNRS, EDF, ANR-06-BLAN-0160-01, ANR-09-BLAN-0269-01, and ARC3939 to BdM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. de Massy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Barthès, P., Buard, J., de Massy, B. (2011). Epigenetic Factors and Regulation of Meiotic Recombination in Mammals. In: Rousseaux, S., Khochbin, S. (eds) Epigenetics and Human Reproduction. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14773-9_6

Download citation

Publish with us

Policies and ethics