Mobile Museum Guide Based on Fast SIFT Recognition

  • Boris Ruf
  • Effrosyni Kokiopoulou
  • Marcin Detyniecki
Conference paper

DOI: 10.1007/978-3-642-14758-6_14

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5811)
Cite this paper as:
Ruf B., Kokiopoulou E., Detyniecki M. (2010) Mobile Museum Guide Based on Fast SIFT Recognition. In: Detyniecki M., Leiner U., Nürnberger A. (eds) Adaptive Multimedia Retrieval. Identifying, Summarizing, and Recommending Image and Music. AMR 2008. Lecture Notes in Computer Science, vol 5811. Springer, Berlin, Heidelberg

Abstract

This article explores the feasibility of a market-ready, mobile pattern recognition system based on the latest findings in the field of object recognition and currently available hardware and network technology. More precisely, an innovative, mobile museum guide system is presented, which enables camera phones to recognize paintings in art galleries.

After careful examination, the algorithms Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF) were found most promising for this goal. Consequently, both have been integrated in a fully implemented prototype system and their performance has been thoroughly evaluated under realistic conditions.

In order to speed up the matching process for finding the corresponding sample in the feature database, an approximation to Nearest Neighbor Search was investigated. The k-means based clustering approach was found to significantly improve the computational time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Boris Ruf
    • 1
  • Effrosyni Kokiopoulou
    • 1
  • Marcin Detyniecki
    • 2
  1. 1.Ecole Polytechnique Fédérale de Lausanne (EPFL) 
  2. 2.Laboratoire d’Informatique de Paris 6 (LIP6) 

Personalised recommendations