Unsupervised Clustering in Personal Photo Collections

  • Edoardo Ardizzone
  • Marco La Cascia
  • Filippo Vella
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5811)

Abstract

In this paper we propose a probabilistic approach for the automatic organization of collected pictures aiming at more effective representation in personal photo albums. Images are analyzed and described in two representation spaces, namely, faces and background. Faces are automatically detected, rectified and represented projecting the face itself in a common low dimensional eigenspace. Backgrounds are represented with low-level visual features based on RGB histogram and Gabor filter energy. Face and background information of each image in the collection is automatically organized by mean-shift clustering technique. Given the particular domain of personal photo libraries, where most of the pictures contain faces of a relatively small number of different individuals, clusters tend to be semantically significant beyond containing visually similar data. We report experimental results based on a dataset of about 1000 images where automatic detection and rectification of faces lead to approximately 300 faces. Significance of clustering has been evaluated and results are very encouraging.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caminati, L., Don, A., et al.: Detection of visual dialog scenes in video content based on structural and semantic features. In: Proc. of International Workshop on Content-based Multimedia Indexing, CBMI (2005)Google Scholar
  2. 2.
    Abdel-Mottaleb, M., Chen, L.: Content-based photo album management using faces’ arrangement. In: IEEE International Conference on Multimedia and Expo., ICME (2004)Google Scholar
  3. 3.
    Ardizzone, E., La Cascia, M., Vella, F.: A novel approach to personal photo album representation and management. In: SPIE, vol. 6820 (2008)Google Scholar
  4. 4.
    Berg, T.L., Berg, A.C., Edwards, J., Maire, M., White, R., Teh, Y.W., Learned-Miller, E., Forsyth, D.A.: Names and faces in the news. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR (1994)Google Scholar
  5. 5.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Object Function. Plenum (1981)Google Scholar
  6. 6.
    Chen, J.Y., Bouman, C.A., Dalton, J.C.: Hierarchical browsing and search of large image databases. IEEE Transaction on Image Processing 9(3), 442–455 (2000)CrossRefGoogle Scholar
  7. 7.
    Cheng, Y.: Mean shift, mode seeking and clustering. IEEE Transaction on Pattern Analysis and Machine Intelligence, 790–799 (August 1995)Google Scholar
  8. 8.
    Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence, 603–619 (May 2002)Google Scholar
  9. 9.
    Cui, J., Wen, F., Xiao, R., Tian, Y., Tang, X.: Easyalbum: An interactive photo annotation system based on face clustering and re-ranking. In: Proc. of ACM CHI (2007)Google Scholar
  10. 10.
    Cuiy, J., Wenz, F., Xiaoz, R., Tianx, Y., Tang, X.: Easyalbum: An interactive photo annotation system based on face clustering and re-ranking. In: Proc. of CHI (2007)Google Scholar
  11. 11.
    Deng, D.: Content based comparison of image collection via distance measuring of self organized maps. In: Proceedings of 10th INternational Multimedia Modelling Conference (2004)Google Scholar
  12. 12.
    Girgensohn, A., Adcock, J., Wilcox, L.: Leveraging face recognition technology to find and organize photos. In: Proc. of ACM MIR (2004)Google Scholar
  13. 13.
    Goldberg, J., Gordon, S., Greenspan, H.: Unsupervised image-set clustering using an information theoretic framework. IEEE Transaction on Image Processing (2), 449–458 (2006)Google Scholar
  14. 14.
    Graham, A., Garcia-Molina, H., Paepcke, A., Winograd, T.: Time as essence for photo browsing through personal digital libraries. In: Proc. of ACM JCDL (2002)Google Scholar
  15. 15.
    Kang, H., Shneiderman, B.: Visualization methods for personal photo collections: Browsing and searching in the photofinder. In: Proc. of IEEE International Conference on Multimedia and Expo., ICME (2000)Google Scholar
  16. 16.
    Krishnamachari, S., Abdel-Mottaleb, M.: Hierarchical clustering algorithm for fast image retrievalGoogle Scholar
  17. 17.
    Lee, B.N., Chen, W.-Y., Chang, E.Y.: A scalable service for photo annotation, sharing and search. In: Proc. of ACM International Conference on Multimedia (2006)Google Scholar
  18. 18.
    Li, C.-H., Chiu, C.-Y., Huang, C.-R., Chen, C.-S., Chien, L.-F.: Image content clustering and summarization for photo collections. In: Proceedings of ICME, pp. 1033–1036 (2006)Google Scholar
  19. 19.
    Naaman, M., Yeh, R.B., Garcia-Molina, H., Paepcke, A.: Leveraging context to resolve identity in photo albums. In: Proc. of ACM JCDL (2005)Google Scholar
  20. 20.
    Shyu, M.-L., Chen, S.-H., Chen, M., Zhang, C.: A unified framework for image database clustering and content-based retrieval. In: ACM International Workshop On Multimedia Databases archive Proceedings of the 2nd ACM international workshop on Multimedia databases, pp. 19–27 (2004)Google Scholar
  21. 21.
    Song, Y., Leung, T.: Context-aided human recognition clustering. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 382–395. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Spyrou, E., Kapsalas, P., Tolias, G., Mylonas, P., Avrithis, Y., et al.: The cost292 experimental framework for trecvid 2007. In: Proc. of 5th TRECVID Workshop (2007)Google Scholar
  23. 23.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. of IEEE International Conference on Computer Vision and Pattern Recognition, CVPR (2001)Google Scholar
  24. 24.
    Wu, K.L., Yang, M.S.: A cluster validity index for fuzzy clustering. Pattern Recognition Letters, 1275–1291 (2005)Google Scholar
  25. 25.
    Zhang, L., Chen, L., Li, M., Zhang, H.: Automated annotation of human faces in family albums. In: Proc. of ACM International Conference on Multimedia (2003)Google Scholar
  26. 26.
    Zhang, L., Hu, Y., Li, M., Ma, W., Zhang, H.: Efficient propagation for face annotation in family albums. In: Proc. of ACM International Conference on Multimedia (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Edoardo Ardizzone
    • 1
  • Marco La Cascia
    • 1
  • Filippo Vella
    • 2
  1. 1.DINFO - Dipartimento di Ingegneria InformaticaUniversity of PalermoPalermoItaly
  2. 2.ICAR - Istituto di Calcolo e Reti ad Alte PrestazioniItalian National Research CouncilPalermoItaly

Personalised recommendations