Automatic Image Tagging Using Community-Driven Online Image Databases

  • Marius Renn
  • Joost van Beusekom
  • Daniel Keysers
  • Thomas M. Breuel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5811)

Abstract

Automatic image tagging is becoming increasingly important to organize large amounts of image data. To identify concepts in images, these tagging systems rely on large sets of annotated image training sets. In this work we analyze image sets taken from online community-driven image databases, such as Flickr, for use in concept identification. Real-world performance is measured using our flexible tagging system, Tagr.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barnard, K., Duygulu, P., Forsyth, D., de Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Barnard, K., Forsyth, D.: Learning the semantics of words and pictures. In: Eighth International Conference on Computer Vision, vol. 2, p. 408 (2001)Google Scholar
  3. 3.
    Birchfeld, S.T., Rangarajan, S.: Spatiograms versus histograms for region-based tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, June 2005, vol. 2, pp. 1158–1163 (2005)Google Scholar
  4. 4.
    Deselaers, T., Keysers, D., Ney, H.: Fire - flexible image retrieval engine. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 688–698. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the 26th Intl. ACM SIGIR Conference, vol. 3, pp. 119–126 (2003)Google Scholar
  6. 6.
    Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. In: Proceedings of the 14th annual ACM international conference on Multimedia, pp. 911–920 (2006)Google Scholar
  7. 7.
    Mori, Y., Takahashi, H., Oka, R.: Image-to-word transformation based on dividing and vector quantizing images with words. In: First International Workshop on Multimedia Intelligent Storage and Retrieval Management (1999)Google Scholar
  8. 8.
    Srikanth, M., Varner, J., Bowden, M., Moldovan, D.: Exploiting ontologies for automatic image annotation. In: Proceedings of the 28th annual international ACM SIGIR Conference, pp. 552–558 (2005)Google Scholar
  9. 9.
    Stricker, M., Dimai, A.: Color indexing with weak spatial constraints. In: Proceedings of SPIE, March 1996, vol. 2670, pp. 29–40 (1996)Google Scholar
  10. 10.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Systems, Man, and Cybernetics 8, 460–472 (1978)CrossRefGoogle Scholar
  11. 11.
    Wenyin, L., Dumais, S., Sun, Y., Zhang, H., Czerwinski, M., Field, B.: Semi-automatic image annotation 01, 326–333 (2001)Google Scholar
  12. 12.
    Yavlinsky, A., Schofield, E., Ruger, S.: Automated image annotation using global features and robust nonparametric density estimation. In: Leow, W.-K., Lew, M., Chua, T.-S., Ma, W.-Y., Chaisorn, L., Bakker, E.M. (eds.) CIVR 2005. LNCS, vol. 3568, pp. 507–517. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marius Renn
    • 1
  • Joost van Beusekom
    • 1
  • Daniel Keysers
    • 1
  • Thomas M. Breuel
    • 1
  1. 1.IUPR GroupTechnical University of KaiserslauternGermany

Personalised recommendations