The Future of Audio Reproduction

Technology – Formats – Applications
  • Matthias Geier
  • Sascha Spors
  • Stefan Weinzierl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5811)

Abstract

The introduction of new techniques for audio reproduction such as binaural technology, Wave Field Synthesis and Higher Order Ambisonics is accompanied by a paradigm shift from channel-based to object-based transmission and storage of spatial audio. The separate coding of source signal and source location is not only more efficient considering the number of channels used for reproduction by large loudspeaker arrays, it will also open up new options for a user-controlled soundfield design. The paper describes the technological change from stereophonic to array-based audio reproduction techniques and introduces a new proposal for the coding of spatial properties related to auditory objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leakey, D.: Further thoughts on stereophonic sound systems. Wireless World 66, 154–160 (1960)Google Scholar
  2. 2.
    Williams, M.: Unified theory of microphone systems for stereophonic sound recording. In: 82nd Convention of the Audio Engineering Society (March 1987)Google Scholar
  3. 3.
    Wendt, K.: Das Richtungshören bei Zweikanal-Stereophonie. Rundfunktechnische Mitteilungen 8(3), 171–179 (1964)Google Scholar
  4. 4.
    Theile, G.: Zur Theorie der optimalen Wiedergabe von stereophonen Signalen über Lautsprecher und Kopfhörer. Rundfunktechnische Mitteilungen 25, 155–169 (1981)Google Scholar
  5. 5.
    Gernemann-Paulsen, A., Neubarth, K., Schmidt, L., Seifert, U.: Zu den Stufen im “Assoziationsmodell”. In: 24. Tonmeistertagung (2007)Google Scholar
  6. 6.
    Blumlein, A.: Improvements in and relating to sound-transmission, sound-recording and sound-reproducing systems. British Patent Specification 394325 (1931)Google Scholar
  7. 7.
    Thiele, H.H.K. (ed.): 50 Jahre Stereo-Magnetbandtechnik. Die Entwicklung der Audio Technologie in Berlin und den USA von den Anfängen bis 1943. Audio Engineering Society (1993)Google Scholar
  8. 8.
    Woodward, J.: Quadraphony–A Review. Journal of the Audio Engineering Society 25(10/11), 843–854 (1977)Google Scholar
  9. 9.
    Theile, G., Plenge, G.: Localization of lateral phantom sources. Journal of the Audio Engineering Society 25, 196–200 (1977)Google Scholar
  10. 10.
    Blauert, J.: Spatial Hearing: The Psychophysics of Human Sound Localization. MIT Press, Cambridge (1996)Google Scholar
  11. 11.
    Lindau, A., Hohn, T., Weinzierl, S.: Binaural resynthesis for comparative studies of acoustical environments. In: 122nd Convention of the Audio Engineering Society (May 2007)Google Scholar
  12. 12.
    Møller, H.: Reproduction of artificial-head recordings through loudspeakers. Journal of the Audio Engineering Society 37, 30–33 (1989)Google Scholar
  13. 13.
    Daniel, J.: Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia. PhD thesis, Université Paris 6 (2000)Google Scholar
  14. 14.
    Poletti, M.: Three-dimensional surround sound systems based on spherical harmonics. Journal of the Audio Engineering Society 53(11), 1004–1025 (2005)Google Scholar
  15. 15.
    Ahrens, J., Spors, S.: An analytical approach to sound field reproduction using circular and spherical loudspeaker distributions. Acta Acoustica united with Acoustica 94(6), 988–999 (2008)CrossRefGoogle Scholar
  16. 16.
    Fazi, F., Nelson, P., Christensen, J., Seo, J.: Surround system based on three dimensional sound field reconstruction. In: 125th Convention of the Audio Engineering Society (2008)Google Scholar
  17. 17.
    Spors, S., Ahrens, J.: A comparison of Wave Field Synthesis and Higher-Order Ambisonics with respect to physical properties and spatial sampling. In: 125th Convention of the Audio Engineering Society (October 2008)Google Scholar
  18. 18.
    Ahrens, J., Spors, S.: Alterations of the temporal spectrum in high-resolution sound field reproduction of different spatial bandwidths. In: 126th Convention of the Audio Engineering Society (May 2009)Google Scholar
  19. 19.
    Berkhout, A.: A holographic approach to acoustic control. Journal of the Audio Engineering Society 36, 977–995 (1988)Google Scholar
  20. 20.
    Spors, S., Rabenstein, R., Ahrens, J.: The theory of Wave Field Synthesis revisited. In: 124th Convention of the Audio Engineering Society (May 2008)Google Scholar
  21. 21.
    Wittek, H.: Perceptual differences between Wavefield Synthesis and Stereophony. PhD thesis, University of Surrey (2007)Google Scholar
  22. 22.
    Kirkeby, O., Nelson, P.: Reproduction of plane wave sound fields. Journal of the Acoustic Society of America 94(5), 2992–3000 (1993)CrossRefGoogle Scholar
  23. 23.
    Ward, D., Abhayapala, T.: Reproduction of a plane-wave sound field using an array of loudspeakers. IEEE Transactions on Speech and Audio Processing 9(6), 697–707 (2001)CrossRefGoogle Scholar
  24. 24.
    Hannemann, J., Leedy, C., Donohue, K., Spors, S., Raake, A.: A comparative study of perceptual quality between Wavefield Synthesis and multipole-matched rendering for spatial audio. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (April 2008)Google Scholar
  25. 25.
    Pulkki, V.: Virtual sound source positioning using Vector Base Amplitude Panning. Journal of the Audio Engineering Society 45(6), 456–466 (1997)Google Scholar
  26. 26.
    Peters, N.: Proposing SpatDIF – the spatial sound description interchange format. In: International Computer Music Conference (August 2008)Google Scholar
  27. 27.
    Web3D Consortium: eXtensible 3D, X3D (2004), http://www.web3d.org/x3d/
  28. 28.
    Väänänen, R., Huopaniemi, J.: Advanced AudioBIFS: Virtual acoustics modeling in MPEG-4 scene description. IEEE Transactions on Multimedia 6(5), 661–675 (2004)CrossRefGoogle Scholar
  29. 29.
    Schmidt, J., Schröder, E.F.: New and advanced features for audio presentation in the MPEG-4 standard. In: 116th Convention of the Audio Engineering Society (May 2004)Google Scholar
  30. 30.
    World Wide Web Consortium: Synchronized Multimedia Integration Language, SMIL 3.0 (2008), http://www.w3.org/TR/SMIL3/
  31. 31.
    World Wide Web Consortium: SMIL Animation (2001), http://www.w3.org/TR/smil-animation/
  32. 32.
    Pihkala, K., Lokki, T.: Extending SMIL with 3D audio. In: International Conference on Auditory Display (July 2003)Google Scholar
  33. 33.
    Geier, M., Spors, S.: ASDF: Audio Scene Description Format. In: International Computer Music Conference (August 2008)Google Scholar
  34. 34.
    Geier, M., Ahrens, J., Spors, S.: The SoundScape Renderer: A unified spatial audio reproduction framework for arbitrary rendering methods. In: 124th Convention of the Audio Engineering Society (May 2008)Google Scholar
  35. 35.
    Geier, M., Ahrens, J., Spors, S.: Binaural monitoring of massive multichannel sound reproduction systems using model-based rendering. In: NAG/DAGA International Conference on Acoustics (March 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Matthias Geier
    • 1
  • Sascha Spors
    • 1
  • Stefan Weinzierl
    • 2
  1. 1.Deutsche Telekom Laboratories, Quality and Usability LabTU BerlinBerlinGermany
  2. 2.Audio Communication GroupTU BerlinBerlinGermany

Personalised recommendations