Skip to main content

Optical Data Storage

  • Chapter
  • First Online:
Memory Mass Storage

Abstract

In recent 30 years, optical data storage has undergone persistent development in response to the ever-growing information storage demands as a result of technological and market competition from magnetic and semiconductor memory technology. This chapter reviews basic principles and some important R&D progress on popular optical disk technology and other high-density optical storage technologies, such as superresolution, near-field, and three-dimensional optical storage technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://en.wikipedia.org/wiki/Optical_disc

  2. http://www.chinahda.org.cn/en/index.html

  3. He H (2009) Review on the optical disc formats. Proc SPIE 7125:712528

    Google Scholar 

  4. Gan F (ed) (1998) Digital optical disk technology. Science Press, Beijing (in Chinese)

    Google Scholar 

  5. Gan F et al (2006) Optical storage technology. In: Liu S (ed) Photonics technolgy and application. pp 1227–1346. Guangdong Science and Technology Press, Guangzhou (in Chinese)

    Google Scholar 

  6. Mustroph H, Stollenwerk M, Bressau V (2006) Current development in optical data storage with organic dye. Angew Chem Int Ed 45:2016–2035

    Google Scholar 

  7. Kubo H, Shibata M, Katayama K et al (2004) Progress in organic write-once technology for blu-ray disc-recordable and DVD-R media. Proc SPIE 5380:128

    Google Scholar 

  8. Usami Y, Kakuta T, Ishida T et al (2003) Blue-violet laser write-once optical disc with spin-coated dye-based recording layer. Proc SPIE 5069:182

    Google Scholar 

  9. Inoue H, Mishima K, Aoshima M et al (2003) Inorganic write-once disc for high speed recording. Jpn J Appl Phys 42:1059–1061

    Google Scholar 

  10. Hosoda Y, Mitsumori A, Megumi et al (2004) Recording mechanism of high-density write-once disks using inorganic recording material. Jpn J Appl Phys 43:4997–5000

    Google Scholar 

  11. Miyagawa Naoyasu. Kitaura Hideki. Katsuyuki Takahashi et al (2006) Over 500 years lifetime dual-layer Blu-ray disc recordable based on Te-O-Pd recording material. Proc SPIE 6282:F1–5

    Google Scholar 

  12. Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824–832

    Google Scholar 

  13. Gan F, Xu L (ed) (2006) Photonics glass. World Scientific, Singapore

    Google Scholar 

  14. Gan F (1996) Rare earth alloy and oxide thin films for optical storage. In: Kumar Das VG (ed) (1996) Main group elements and their compounds. Narosa Publishing House, New Delhi, pp 63–76

    Google Scholar 

  15. Gambino RJ, Takao Suzuki T (ed) (1999) Magneto-Optical Recording Materials. Wiley-IEEE Press

    Google Scholar 

  16. Korpel A (1978) Simplified diffraction theory of the video disk. Appl Opt 17:2037–2042

    Google Scholar 

  17. Hopkins HH (1979) Diffraction theory of laser read-out systems for optical video disks. J Opt Soc Am 69:4–24

    Google Scholar 

  18. Wilson T, Sheppard CJR (1984) Theory and practice of the scanning optical microscope. Cambridge University Press, Cambridge

    Google Scholar 

  19. Heisenberg W (1930) Physikalische Prinzipien der Quantentheorie (Leipzig: Hirzel). English translation. The physical principles of quantum theory. University of Chicago Press, Chicago

    Google Scholar 

  20. van de Nes AS, Braat JJM, Pereira SF (2006) High-density optical data storage. Rep Prog Phys 69:2323–2363

    Google Scholar 

  21. di Francia GT (1952) Nuovo pupille superresolventi. Atti Fond. Goirgio Ronchi 7:366–372

    Google Scholar 

  22. di Francia GT (1952) Super-gain antennas and optical resolving power. Nuovo Cimento Suppl 9:426–435

    Google Scholar 

  23. Ando H (1992) Phase-shifting apodizer of three or more portions. Jpn J Appl Phys 31:557

    Google Scholar 

  24. Ando H, Yokota T, Tanoue K (1993) Optical head with annular phase-shifting apodizer. Jpn J Appl Phys 32:5269

    Google Scholar 

  25. Wang H, Gan F (2001) New approach to superresolution. Opt Eng 40(5):851–855

    Google Scholar 

  26. Wang H, Gan F (2002) Phase-shifting apodizer for increasing the focal depth. Appl Opt 41(25):5263–5266

    Google Scholar 

  27. Wang H, Gan F (2001) High focal depth with pure-phase apodizer. Appl Opt 40(31):5658–5662

    Google Scholar 

  28. Wang H, Shi L, Yuan G, Miao XS, Tan W, Chong T (2006) Subwavelength and super-resolution nondiffraction beam. Appl Phys Lett 89:171102

    Google Scholar 

  29. Wang H, Shi L, Luk’yanchuk B, Sheppard C, Chong CT (2008) Creation of a needle of longitudinal polarized light in vacuum using binary optics. Nat Photonics 2:501–505

    Google Scholar 

  30. Luo H, Zhou C (2004) Comparison of superresolution effects with annular phase and amplitude filters. Appl Opt 43(34):6242–6247

    Google Scholar 

  31. Lokosz W (1966) Optical system with resolving powers exceeding the classical limit. J Opt Soc Am 56:1463–1472

    Google Scholar 

  32. Bouwhuis G, Spruit J (1990) Optical storage read-out of nonlinear disks. Appl Opt 29:3766–3768

    Google Scholar 

  33. Tominaga J, Fuji H, Sato A, Nakano T, Fukaya T, Atoda NJ (1998) The near-field super-resolution properties of an antimony thin film. Jpn J Appl Phys Part 2—Lett 37:L1323–L1325

    Google Scholar 

  34. Wang H, Yuan G, Tan W, Shi L, Chong T (2007) Spot size and depth of focus in optical data storage system. Opt Eng 46:065201

    Google Scholar 

  35. Dorn R, Quabis S, Leuchs G (2003) Sharper focus for a radially polarized light beam. Phys Rev Lett 91:233901

    Google Scholar 

  36. Visser TD, Foley JT (2005) On the wavefront spacing of focused, radially polarized beams. J Opt Soc Am A 22:2527–2531

    MathSciNet  Google Scholar 

  37. van de Nes S, Billy L, Pereira SF (2004) Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system. Opt Express 12:1281–1293

    Google Scholar 

  38. Park N-C, Yang1 H-S, Rhim1 Y-C, Park1 Y-P (2008) A study on enhancing data storage capacity and mechanical reliability of solid immersion lens-based near-field recording system. Jpn J Appl Phys 47:6646–6654

    Google Scholar 

  39. Yoon Y-J, Kim W-C, Park K-S, Park N-C, Park Y-P (2009) Cover-layer-protected solid immersion lens-based near-field recording with an annular aperture. J Opt Soc Am A 26:1882–1888

    Google Scholar 

  40. Lisa D, Curtis K, Facke T (2008) Holographic data storage: coming of age. Nat Photonics 2:403–405

    Google Scholar 

  41. Leith EN (1966) Holographic data storage in three-dimensional media. Appl Opt 5:1303–1311

    Google Scholar 

  42. Bianco A (2005) A theoretical study to understand the effect on the IR spectrum and a simple way to read optical memory in the mid-IR. Chem Mater 17:869–874

    Google Scholar 

  43. Chen Y (2004) Photochromic fulgide for holographic recording. Opt Mater 26:75–77

    Google Scholar 

  44. Kann JL, Canfield BW, Jamberdino AA, Clarke BJ, Daniszewski Ed, Sunada G (1996) Mass storage and retrieval at Rome laboratory. Proceedings of the 5th NASA Goddard mass storage systems and technologies conference (College Park, Maryland)

    Google Scholar 

  45. Demetri P (1995) Holographic memories. Scient Am 273:70–76

    Google Scholar 

  46. Coufal HJ, Sincerbox GT, Psaltis D (2000) Holographic data storage. Springer, New York, NY

    MATH  Google Scholar 

  47. Hardin RW (July 1999) Optical storage stacks the deck. OE reports No.187 (http://spie.org/x19548.xml?ArticleID=x19548)

  48. Michael RG et al (2006) Effects of absorption and inhibition during grating formation in photopolymer materials. J Opt Soc Am B 23:2079–2088

    Google Scholar 

  49. Bloom A et al (2004) The effect of polymer host on volume phase holographic recording properties. Polym Eng Sci 17:356–358

    Google Scholar 

  50. Jeong YC et al (2007) Holographic diffraction gratings with enhanced sensitivity based on epoxy-resin photopolymers. Opt Exp 15:1497–1504

    Google Scholar 

  51. Gong Q et al (2005) Humidity-resistant highly sensitive holographic photopolymerizable dry film. Mater Lett 59:2969–2972

    Google Scholar 

  52. Blaya S et al (2003) Optimization of a photopolymerizable holographic recording material based on polyvinyl- alcohol using angular responses. Opt Mater 23:529–538

    Google Scholar 

  53. Samui AB (2008) Holographic recording medium Haugh. Recent Pat Mater Sci 1:74–94

    Google Scholar 

  54. Barachevskii V (2006) Photopolymerizable recording media for three dimensional holographic optical memory. High Energ Chem 40:165–176

    Google Scholar 

  55. Suzuki N et al (2002) Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Appl Phy Lett 81:4121–4123

    Google Scholar 

  56. Suzuki N, Tomita Y (2004) Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%. Appl Opt 43:2125–2129

    Google Scholar 

  57. Tomita Y et al (2005) Holographic manipulation of nanoparticle distribution morphology in nanoparticle-dispersed photopolymers. Opt Lett 30:839–841

    Google Scholar 

  58. Suzuki N et al (2006) Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Opt Exp 14:12712– 12719

    Google Scholar 

  59. Park J, Kim E (2005) Preparation and characterization of organic inorganic nanocomposite films for holographic recording. Key Eng Mater 277–279:1039–1043

    Google Scholar 

  60. Yamamoto T et al (2000) Holographic grating and holographic image storage via photochemical phase transitions of polymer azobenzene liquid-crystal films. J Mater Chem 10:337–342

    Google Scholar 

  61. Ichimura K (2000) Photoalignment of liquid-crystal systems. Chem Rev 100:1847–1873

    Google Scholar 

  62. Corvazier L (1999) Induction of liquid crystal orientation through azobenzene-containing polymer networks. Macromolecules 32:3195–3200

    Google Scholar 

  63. Yoneyama S (2002) High-performance material for holographic gratings by means of a photoresponsive polymer liquid crystal containing a tolane moiety with high birefringence. Macromolecules 35:8751–8758

    Google Scholar 

  64. Shibaev V et al (2000) Fieldresponsive chiral-photochromic side-chain liquid-crystalline polymers. Polym Int 49:931–936

    Google Scholar 

  65. Shibaev V et al (2003) Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties. Prog Polym Sci 28:729–836

    Google Scholar 

  66. Yin S (1993) Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser. Opt Commun 101: 317–321

    Google Scholar 

  67. Randolph G (1995) Green microlaser technology promises new applications. Laser Focus World 31:121–125

    Google Scholar 

  68. Goertzen B (1996) Volume holographic storage for large relational databases. Opt Eng 335:1847–1853

    Google Scholar 

  69. Huo Y (1996) Miniature green lasers for optical recording and storage. Proc SPIE 2890: 49–52

    Google Scholar 

  70. Sefler G (1997) Radio-frequency matched filtering by photorefractive optical holography. Appl Opt 36:7415–7421

    Google Scholar 

  71. Coy J (1996) Characterization of a liquid crystal television as a programmable spatial light modulator. Opt Eng 35:15–19

    Google Scholar 

  72. Ward C (1991) Operating modes of the microchannel spatial light modulator. Opt Eng 30:1442–1427

    Google Scholar 

  73. Shiquan T, Dayong W, Zhuqing J (1998) Optical holographic storage. Beijing Institute of Technology Press, Beijing (in Chinese)

    Google Scholar 

  74. Kulich H (1991) Reconstructing volume holograms without image field loss. Appl Opt 30:2850–2857

    Google Scholar 

  75. Peter A (1994) Noise-free holographic storage in iron-doped lithiume niobate crystals. Opt Lett 19:1583–1585

    Google Scholar 

  76. Yariv A (1993) Interpage and interpixel cross talk in orthogonal holograms. Opt Lett 18: 652–654

    Google Scholar 

  77. Yi X (1994) Statistical analysis of cross-talk noise and storage capacity in volume holographic memory. Opt Lett 19:1580–1582

    Google Scholar 

  78. Gu C (1996) Bit-error rate and statistics of complex amplitude noise in holographic data storage. Opt Lett 21:1070–1072

    Google Scholar 

  79. Neifeld M (1996) Technique for controlling cross-talk noise in volume holography. Opt Lett 21:1298–1300

    Google Scholar 

  80. Bashaw M (1994) Cross-talk in multiplexed holograms using phase-encoded multiplexing in volume holography. J Opt Soc Am B 11:1820–1836

    Google Scholar 

  81. Yi X (1995) Cross-talk noise in volume holographic memory with spherical reference beams. Opt Lett 20:1812–1814

    Google Scholar 

  82. Yi X (1995) Statistical analysis of cross-talk noise and storage capacity in volume holographic memory: image plane holograms. Opt Lett 20:779–781

    Google Scholar 

  83. Dai F (1997) Statistical analysis on extended reference method for volume holographic data storage. Opt Eng 36:1691–1699

    Google Scholar 

  84. Steckman G (2001) Storage density of shift-multiplexed holographic memory. Appl Opt 40:3387–3394

    Google Scholar 

  85. Courjon D, Bainier C (1994) Near field microscopy and near field optics. Rep Prog Phys 57:989–1028

    Google Scholar 

  86. Nanba S et al (ed) (2003) Nanotechnology handbook. Ohmsha, Tokyo

    Google Scholar 

  87. Betzig E, Trautman JK, Wolfe R, et al (1992) Near-field magneto-optics and high density data storage. Appl Phys Lett 61(2):142–144

    Google Scholar 

  88. Hosaka S, Shintani T, Miyamoto M, et al (1996) Nanometer-sized phase-change recording using a scanning near-field optical microscope with a laser diode. Jpn J Appl Phys 35(1B):443–447

    Google Scholar 

  89. Kim MR, Park JH, Jhe W (2000) Near field optical recording by reflection-mode near-field scanning optical microscopy: submicron-sized marks and their thermodynamic stability. Jpn J Appl Phys 39(2B):984–985

    Google Scholar 

  90. Jiang S, Ichihashi J, Monobe H, et al (1994) Highly localized photochemical processes in LB films of photochromic material by using a photon scanning tunneling microscope. Opt Commun 106:173–177

    Google Scholar 

  91. Yatsui T, Kourogi M, Tsutsui K, et al (2000) High-density-speed optical near-field recording-reading with a pyramidal silicon probe on a contact slide. Opt Lett 25(17): 1279–1281

    Google Scholar 

  92. Mansfield SM, Kino GS (1990) Solid immersion microscope. Appl Phys Lett 57(24):2615–2616

    Google Scholar 

  93. Terris BD, Mamin HJ, Rugar D, et al (1994) Near field storage using a solid immersion lens. Appl Phys Lett 65(4):388–390

    Google Scholar 

  94. Terris BD, Mamin HJ, Rugar D, et al (1996) Near field optical data storage. Appl Phys Lett 68(2):141–143

    Google Scholar 

  95. Ichimura I, Hayashi S, Kino GS (1997) High-density optical recording using a solid immersion lens. Appl Opt 36(19):4339–4348

    Google Scholar 

  96. Chekanov A, Birukawa M, Itoh Y, et al (1999) “Contact” solid immersion lens near-field optical recording in magneto-optical TbFeCo media. J Appl Phys 85(8):5324–5326

    Google Scholar 

  97. Ichimura I, Kishima K, Saito K, et al (2001) Near-field optical recording on a pre-grooved phase-change disk in the blue-violet. Jpn J Appl Phys 40(3B):1821–1826

    Google Scholar 

  98. Shinoda M, Saito K, Ishimoto T, Kondo T, Nakaoki A, Furuki M, Takeda M, Yamamoto M (2003) Proc SPIE 5069:306

    Google Scholar 

  99. Shinoda M, Saito K, Ishimoto T, Kondo T, Nakaoki A, Furuki M, Takeda M, Akiyama Y, Shimouma T, Yamamoto M (2004) Proc SPIE 5380:224

    Google Scholar 

  100. http://www.thic.org/pdf/Jul98/terastor.gknight.pdf

  101. Shinoda M, Saito K, Kondo T et al (2006) High-density near-field readout using diamond solid immersion lens. Jpn J Appl Phys 45:1311

    Google Scholar 

  102. Partovi A, Peale D, Wuttig M et al (1999) High-power laser light source for near-field optics and its application to high-density optical data storage. Appl Phys Lett 75(11):1515–1517

    Google Scholar 

  103. Goto K (1998) Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array. Jpn J Appl Phys 37(4B):2274–2278

    MathSciNet  Google Scholar 

  104. Tominaga J, Nakano T et al (1998) An approach for recording and readout beyond the diffraction limit with a Sb thin film. Appl Phy Lett 73(15):2078–2080

    Google Scholar 

  105. Yasuda K, Ono M, Aratani K et al (1993) Premastered optical disk by superresolution. Jpn J Appl Phys 32(11B):5210–5213

    Google Scholar 

  106. Tominaga J, Fuji H, Sato A et al (2000) The characteristics and the potential of super resolution near-field structure. Jpn J Appl Phys 39(2B):957–961

    Google Scholar 

  107. He YC, Lan YC, Hsu WC et.al (2004) Effect of constituent phases of reactively sputtered AgOx film on recording and readout mechanisms of super-resolution near-field structure disk structure disk with a silver oxide mask layer. J Appl Phys 96(3):1283–1285

    Google Scholar 

  108. Kolobov AV, Rogalev A, Wilhelm F et al (2004) Thermal decomposition of a thin AgOx layer generating optical near-field. Appl Phys Lett 84(4):1641–1643

    Google Scholar 

  109. Shima T, Tominaga J (2003) Optical and structural property change by the thermal decomposition of amorphous platinum oxide film. Jpn J Appl Phys 42(6A):3479–3480

    Google Scholar 

  110. Kim J, Hwang I, Yoon D, Park I, Shin D, Kikukawa T, Shima T, Tominaga J (2003) Super-resolution by elliptical bubble formation with PtOx and AgInSbTe layer. Appl Phys Lett 83(9):1701–1703

    Google Scholar 

  111. Kim J, Hwang I, Kim H, et al (2004) Signal characteristics of super-resolution near-field structure disk in blue laser system. Jpn J Appl Phys 43(7B):4921–4924

    Google Scholar 

  112. Kim J, Hwang I, Kim H, Bae J, Jung M, Park I, Tominaga J (2005) Proceedings of ISPS 2005, Awaji Yumebutai ICC, p 46

    Google Scholar 

  113. Seo M, Im S, Lee J. (2009) Nonlinear modeling of super-resolution near-field structure. Jpn J Appl Phys 48:03A051

    Google Scholar 

  114. Tsai DP, Lin WC (2000) Probing the near fields of the super-resolution near-field optical structure. Appl Phys Lett 77:1413

    Google Scholar 

  115. Liu WC, Wen CY, Chen KH, Lin WC, Tsai DP (2001) Near-field images of the AgOx-type super-resolution near-field structure. Appl Phys Lett 78:685

    Google Scholar 

  116. Song KB, Lee J, Kim JH et al (2000) Direct observation of self-focusing with subdiffraction limited resolution using near-field scanning optical microscope. Phys Rev Lett 85:3842–3845

    Google Scholar 

  117. Song KB, Kim J, Park KH (2002) Technique to enhance the throughput on a near-field aperture by the use of self-focusing effect. Appl Phys Lett 80:2827–2829

    Google Scholar 

  118. Gan FX, Liu QM (2002) Nonlinear optical effects in chalcogenide glasses (invited paper). In: 13th International Symposium on “Non-Oxide Glasses and New Optical Glasses”, Pardubice, Czech Republic

    Google Scholar 

  119. Nagase T, Ashida S, Ichihara K (1999) Super-resolution effect of semiconductor-doped glass. Jpn J Appl Phys 38:1665–1668

    Google Scholar 

  120. Tominaga J et al (2004) Ferroelectric catastrophe: beyongd nanometer-scale optical resolution. Nanotechnology 15:411–415

    Google Scholar 

  121. Zhang F, Wang Y, Xu WD et al (2004) High-density read-only memory disk with Ag11In12Sb51Te26 super-resolution mask layer. Chin Phys Lett 21(10):1973–1975

    MathSciNet  Google Scholar 

  122. Avrutsky I et al (2004) Super-resolution in laser annealing and ablation. Appl Phys Lett 84(13):2391–2393

    Google Scholar 

  123. Cohn K, Simanovskii D, Smith T et al (2002) Transient photoinduced diffractive solid immersion lens for infrared microscopy. Appl Phys Lett 81:3678–3680

    Google Scholar 

  124. Wei JS, Gan FX (2003) Study on readout of super-resolution pits with Si films. Proc SPIE 5060:167–170

    Google Scholar 

  125. Ou DR, Zhu J, Zhao JH (2003) Approach for imaging optical super-resolution based on Sb films. Appl Phys Lett 82(10):1521–1523

    Google Scholar 

  126. Wei JS, Gan FX (2003) Thermal lens model of Sb thin films in super-resolution near-field structure. Appl Phys Lett 82(16):2607–2609

    Google Scholar 

  127. Pan Z et al (1995) Linear and nonlinear optical response of bismuth and antimony implanted fused silica: annealing effects. Opt Mater 4:675–684

    Google Scholar 

  128. Liu DR et al (2002) Giant nonlinear optical properties of bismuth thin films grown by pulsed laser deposition. Opt Lett 27(17):1549–1551

    Google Scholar 

  129. Zhang F, Xu WD, Wang Y et al (2004) Static optical recording properties of super-resolution near-field structure with bismuth mask layer. Jpn J Appl Phys 43(11A):7802–7806

    Google Scholar 

  130. Lu YH, Dimitrov D, Liu JR et al (2001) Mask films for thermally induced superresolution readout in rewritable phase-change optical disks. Jpn J Appl Phys 40(3B):1647–1648

    Google Scholar 

  131. Zhang F, Wang Y, Xu WD et al (2005) Read-only memory disk with AgOx super-resolution mask layer. Chin Opt Lett 3(2):113–115

    MathSciNet  Google Scholar 

  132. Liu Q, Kim J, Fukaya T, Tominaga J (2003) Thermal-induced optical properties of a PdOx mask layer in an optical data storage system with a supper-resolution near-field structure. Opt Express 11(21):2646–2653

    Google Scholar 

  133. Tsujioka T. Photochromism and its application to a high-density optical memory. Mol Cryst Liq Cryst 315:1–9

    Google Scholar 

  134. Hatakeyama M et al (2000) Super-resolution rewritable optical disk having a mask layer composed of thermochromic organic dye. Jpn J Appl Phys 39:752–755

    Google Scholar 

  135. Lu SW, Hou LS, Gan FX (1997) Structure and optical property changes of sol-gel derived VO2 thin films. Adv Mat 9(3):244–245

    Google Scholar 

  136. Shintani T et al (1999) A new super-resolution film applicable to read-only and rewritable optical disks. Jpn J Appl Phys 38:1656–1660

    Google Scholar 

  137. Gan FX (ed) (1992) Digital optical disk and optical storage materials. Shanghai Science and Technology Press, Shanghai (in Chinese)

    Google Scholar 

  138. Wu YH, Khoo H, Kogure T (1994) Read-only optical disk with superresolution. Appl Phys Lett 64(24):3225–3227

    Google Scholar 

  139. Mori G, Yamamoto M, Tajima H et al (2005) Energy-gap-induced super-resolution (EG-SR) optical disc using ZnO interference film. Jpn J Appl Phys 44(5B):3627–3630

    Google Scholar 

  140. Husakou A, Herrmann J (2004) Superfocusing of light below the diffraction limit by photonic crystals with negative refraction. Opt Express 12(26):6491–6497

    Google Scholar 

  141. Liu L, He SL (2004) Near-field optical storage system using a solid immersion lens with a left-handed material slab. Opt Express 12(20):4835–4841

    Google Scholar 

  142. Chu TC, Liu W-C, Tsai DP, Yoshimasa K (2008) Readout signals enhancements of subwavelength recording marks via random nanostructures. Jpn J Appl Phys 47(7):5767–5769

    Google Scholar 

  143. Park S, Hahn JW (2009) Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material. Opt Express 17(22):20203

    Google Scholar 

  144. Challener WA, Gage Ed, Itagi A, Peng C (2006) Optical transducers for near field recording. Jpn J Appl Phys 45(8B):6632–6642

    Google Scholar 

  145. Matsumoto T, Shimano T, Saga H, Sukeda H, Kiguchi M (2004) Highly efficient probe with a wedge-shaped metallic plate for high density near-field optical recording. J Appl Phys 95:3901

    Google Scholar 

  146. Nakagawa K, Kim J, Itoh A (2006) Near-field optically assisted hybrid head for self-aligned plasmon spot with magnetic field. J Appl Phys 99:08F902

    Google Scholar 

  147. Miyanishi S, Iketani N, Takayama K, Innami K, Suzuki I, Kitazawa T, Ogimoto Y, Murakami Y, Kojima K, Takahashi A (2005) Near-field assisted magnetic recording. IEEE Trans Magn 41:2817

    Google Scholar 

  148. Hongo K, Watanabe T (2008) Lensless surface plasmon head with 1 Tbit/in.2 Recording density. Jpn J Appl Phys 47(7):6000–6006

    Google Scholar 

  149. Zakharian R, Mansuripur M, Moloney JV (2004) Transmission of light through small elliptical apertures. Opt Express 11:2631

    Google Scholar 

  150. Shi X, Lambertus H, Thornton RL (2003) Ultrahigh light transmission through a C-shaped nanoaperture. Opt Lett 28(15):1320–1322

    Google Scholar 

  151. Jin EX, Xu X (2003) Enhancement of optical transmission through planar nano-apertures in a metal film. Proceedings of IMECE’03 (Washington D.C.), p1

    Google Scholar 

  152. Xu X, Jin EX, Uppuluri SMV (2004) Enhancement of optical transmission through planar nano-apertures in a metal film. Proc SPIE 5515:230

    Google Scholar 

  153. Xu J, Xu T, Wang J, Tian Q (2005) Design tips of nanoapertures with strong field enhancement and proposal of novel L-shaped aperture. Opt Eng 44:018001

    Google Scholar 

  154. Jin EX, Fu X (2004) Finite-difference time-domain studies on optical transmission through planar nano-apertures in a metal film. Jpn J Appl Phys 43:407

    Google Scholar 

  155. Shima T, Kuwahara M, Fukaya T, et al (2004) Super-resolutional readout disk with metal-free phthalocyanine recording layer. Jpn J Appl Phys 43(1A/B):L 88–L 90

    Google Scholar 

  156. Gao XY, Wang SY, Li J et al (2004) Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods. Thin Solid Films 455/456:438–442

    Google Scholar 

  157. Rausch T, Mihalcea C, Pelhos K et al (2006) Near field heat assisted magnetic recording with a planar solid immersion lens. Jpn J Appl Phys 45(2B):1314–1320

    Google Scholar 

  158. Kim JH, Buechel D, Nakano T et al (2000) Magneto-optical disk properties enhanced by a nonmagnetic mask layer. Appl Phys Lett 77(12):1774–1776

    Google Scholar 

  159. Shi LP, Chong TC, Miao XS et al (2001) A new structure of Super-resolution near-field phase-change optical disk with a Sb2Te3 mask layer. Jpn J Appl Phys 40(3B): 1649–1650

    Google Scholar 

  160. Likodimos V, Labardi M, Pardi L et al (2003) Optical nanowriting on azobenzene side-chain polymethacrylate thin films by near-field scanning optical microscopy. Appl Phys Lett 82(19):3313–3315

    Google Scholar 

  161. Lu Y, Wang P, Jiangying Z et al (2003) Near field optical storage based on solid immersion lens. Chin J Laser 30(2):145–148 (in Chinese)

    Google Scholar 

  162. Hamano M, Irie M (1996) Rewritable near-field optical recording on photochromic thin films. Jpn J Appl Phys 35(3):1764–1767

    Google Scholar 

  163. Kim J, Song KB, Park KH et al (2002) Near-field optical recording of photochromic materials using bent cantilever fiber probes. Jpn J Appl Phys 41(8):5222–5225

    Google Scholar 

  164. Kim MS, Sakata T, Kawai T et al (2003) Amorphous photochromic films for near-field optical recording. Jpn J Appl Phys 42(6A):3676–3681

    Google Scholar 

  165. Liu X, Pu S, Zhang F (2004) Synthesis and application of organic near field optical storage materials. Chin J Laser 31(12):1460–1465 (in Chinese)

    Google Scholar 

  166. Feng X, Yang W, Yongling B et al (2004) Near field optical storage characteristics of bacteriorhodopsin. Appl Laser 25(6):5–8 (in Chinese)

    Google Scholar 

  167. Irie M, Ishida H, Tsujioka T (1999) Rewritable near-field optical recording on photochromic perinaphthothioindigo thin films: readout by fluorescence. Jpn J Appl Phys 38(10):6114–6117

    Google Scholar 

  168. Shima T, Nakano T, Kurihara K et al (2008) Super-resolution readout of 50 nm read-only-memory pits using optics based on high-definition digital versatile disc. Jpn J Appl Phys 47(7):5842–5844

    Google Scholar 

  169. Dvornikov S, Walker EP, Rentzepis PM (2009) Two-photon three-dimensional optical storage memory. J Phys Chem 113(49):13633

    Google Scholar 

  170. Göppert-Mayer M (1931) Über elementarakte mit zwei quantensprüngen. Ann Phys 9:273

    MATH  Google Scholar 

  171. Kaiser W, Garrett CGB (1961) Two-photon excitation in CaF2:Eu2+ Phys Rev Lett 7(6):229

    Google Scholar 

  172. Belfield KD, Morales AR, Andrasik S et al (2002) Novel two-photon absorbing polymers in Carraher CE and Swift GG (ed) Functional Condensation Polymer, Springer, New York, pp 135–147

    Google Scholar 

  173. Rumi M, Barlow S, Wang J et al (2008) Adv Polym Sci 213:1

    Google Scholar 

  174. Ovsianikov A, Chichkov BN (2008) Two-photon polyerization-hgih resolution 3D laser technology and its application in Korkin A, Rosei F (ed) Nanoelectronics and photonics, Springer, New York, pp 427–446

    Google Scholar 

  175. Kawata S, Kawata Y (2000) Three-dimensional optical data storage using photochromic materials. Chem Rev 100:1777

    Google Scholar 

  176. Parthenopoulos DA, Rentzepis PM (1989) Three-dimensional optical storage memory. Science 24:843

    Google Scholar 

  177. Dvornikov S, Malkin J, Rentzepis PM (1994) Spectroscopy and kinetics of photochromic materials for 3D optical memory devices. J Phys Chem 98:6746

    Google Scholar 

  178. Irie M (ed) (1994) Photoreactive materials for ultrahigh-density optical memory. Elsevier, Amsterdam

    Google Scholar 

  179. Hamano M, Irie M (1996) Rewritable near-field optical recording on photochromic thin films. Jpn J Appl Phys 35:1764

    Google Scholar 

  180. Toriumi A, Kawata S, Gu M (1998) Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. Opt Lett 23:1924

    Google Scholar 

  181. Xia D, Wada S, Tashiro H (1998) Optical data storage in C60 doped polystyrene film by photo-oxidation. Appl Phys Lett 73:1323–1325

    Google Scholar 

  182. Wada S, Xia AD, Tashiro H (2002) 3D optical data storage with two-photon induced photon-oxidation in C60-doped polystyrene film. RIKEN Rev 49:11

    Google Scholar 

  183. Li F, Zhuang J, Jiang G, Tang H, Xia A, Jiang L, Song Y, Li Y, Zhu D (2008) A Rewritable Optical Data Storage Material System by [2 + 2] Photocycloreversion–Photocycloaddition. Chem Mater 20:1194

    Google Scholar 

  184. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22:132

    Google Scholar 

  185. Reinhardt C, Kiyan R, Passinger S, Stepanov A, Ostendorf A, Chichkov B (2007) Rapid laser prototyping of plasmonic components. Appl Phys A: Mater Sci Process 89:321

    Google Scholar 

  186. Park S, Lim T, Yang D, Kim R, Lee K (2006) Improvement of spatial resolution in nano-stereolithography using radical quencher. Macromol Res 14:559–564

    Google Scholar 

  187. Kawata S, Sun HB, Tanaka T, Takada K (2001) Finer features for functional microdevices. Nature 412:697

    Google Scholar 

  188. Yanez CO, Andrade CD, Yao S, Luchita G, Bondar MV, Belfield KD (2009) Photosensitive polymeric materials for two-photon 3D WORM optical data storage systems. Appl Mater Interfaces 1:2219

    Google Scholar 

  189. Dvornikov S, Cokgor I, Wang M, McCormick FB, Esener SE, Rentzepis PM (1997) Materials and systems for two photon 3D ROM device. IEEE TCPMT – Part A 20:200

    Google Scholar 

  190. McCormick FB, Cokgor I, Esener SC, Dvornikov AS, Rentzepis PM (1996) Two-photon absorption-based 3D optical memories. Proc SPIE 2604:23

    Google Scholar 

  191. Dvornikov S, Walker EP, Rentzepis PM (2009) Two-photon three-dimensional optical storage memory. J Phys Chem A 113(49):13633

    Google Scholar 

  192. Strickler JH, Webb WW (1991) Three-dimensional optical data storage in refractive media by two-photon point excitation. Opt Lett 16:1780

    Google Scholar 

  193. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73

    Google Scholar 

  194. Toriumi A, Kawata S, Gu M (1998) Reflection confocal microscope readout system for three-dimensional photochromic optical data storage. Opt Lett 23:1924

    Google Scholar 

  195. Kawata Y, Ishitobi H, Kawata S (1998) Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory. Opt Lett 23:756

    Google Scholar 

  196. Day D, Gu M (1998) Effects of refractive-index mismatch on three-dimensional optical data-storage density in a two-photon bleaching polymer. Appl Opt 37:6299

    Google Scholar 

  197. Cheng PC, Bhawalkar JD, Pan SJ, Swiatkiewicz J, Samarabandu JK, Liou WS, He GS, Ruland GE, Kumar ND, Prasad PN (1996) Three-dimensional laser scanning two-photon fluorescence confocal microscopy of polymer materials using a new efficient upconverting fluorophore. Scanning 18:129

    Google Scholar 

  198. Walker Ed, Dvornikov A, Coblentz K, Rentzepis P (2008) Terabyte recorded in two-photon 3D disk. Appl Opt 47:4133

    Google Scholar 

  199. Walker Ed, Dvornikov A, Coblentz K, Esener S, Rentzepis P(2007) Toward terabyte two-photon 3D disk. Opt Express 15:12264

    Google Scholar 

  200. Walker EP, Rentzepis PM (2008) Two-photon technology: A new dimension. Nat Photonics 2:406

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, Y., Wu, Y., Wang, H., Huang, M., Wang, Y. (2011). Optical Data Storage. In: Campardo, G., Tiziani, F., Iaculo, M. (eds) Memory Mass Storage. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14752-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14752-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14751-7

  • Online ISBN: 978-3-642-14752-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics