Skip to main content

The Words of the Human Locomotion

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 66))

Abstract

This paper overviews a multidisciplinary research effort on the understanding of human locomotion. It addresses the computational principles of locomotion neuroscience via the geometric control of nonholonomic systems. We argue that a human locomotion model can be derived from a top-down approach, by exclusively looking at the shape of locomotor trajectories and by ignoring all the body biomechanical motor controls generating the motions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arechavaleta, G., Laumond, J.-P., Hicheur, H., Berthoz, A.: The nonholonomic nature of human locomotion: a modeling study. In: 1st IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, Pisa, Italy (2006)

    Google Scholar 

  2. Arechavaleta, G., Laumond, J.-P., Hicheur, H., Berthoz, A.: Optimizing principles underlying the shape of trajectories in goal oriented locomotion for humans. In: IEEE / RAS Int. Conf. on Humanoid Robots, Genoa, Italy (2006)

    Google Scholar 

  3. Balkcom, D., Kavathekar, P.-A., Mason, M.: Fastest trajectories for an omni-directional vehicle. In: International Workshop on Algorithmic Foundations of Robotics (2006)

    Google Scholar 

  4. Balkcom, D., Mason, M.: Time optimal trajectories for bounded velocity differential drive vehicles. International Journal of Robotics Research 21(3) (2002)

    Google Scholar 

  5. Bellaiche, A., Risler, J.-J. (eds.): SubRiemannian Geometry. Progress in Math. vol. 144. Birkhauser, Basel (1996)

    Google Scholar 

  6. Bernstein, N.-I.: The Coordination and Regulation of Movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  7. Boissonnat, J.-D., Cerezo, A., Leblong, J.: Shortest paths of bounded curvature in the plane. In: IEEE Int. Conf. on Robotics and Automation, Nice, France (1992)

    Google Scholar 

  8. Dubins, L.-E.: On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal positions and tangents. American Journal of Mathematics 79 (1957)

    Google Scholar 

  9. Choset, H., et al.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  10. Fernandes, C., Gurvits, L., Li, Z.: Near-optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Transactions on Automatic Control 39(3) (1994)

    Google Scholar 

  11. Flash, T., Handzel, A.-A.: Affine differential geometry analysis of human arm movements. Biological Cybernetics 96 (2007)

    Google Scholar 

  12. Hicheur, H., Pham, Q.-C., Arechavaleta, G., Laumond, J.-P., Berthoz, A.: The formation of trajectories during goal-oriented locomotion in humans I. European Journal of Neuroscience 26 (2007)

    Google Scholar 

  13. Jordan, M.-I., Wolpert, D.-M.: Computational motor control. In: Gazzaniga (ed.). MIT Press, Cambridge (1999)

    Google Scholar 

  14. Khatib, O.: A unified approach to motion and force control of robot manipulators: The operational space formulation. IEEE Journal on Robotics and Automation 3(1) (1987)

    Google Scholar 

  15. Laumond, J.-P., Sekhavat, S., Lamiraux, F.: Guidelines in Nonholonomic Motion Planning for Mobile Robots. In: Laumond, J.P. (ed.) Robot Motion Planning and Control. LNCIS, vol. 229. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. LaValle, S.-M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  17. Li, Z., Canny, J.-F.: Nonholonomic Motion Planning. Kluwer, Boston (1993)

    Google Scholar 

  18. Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison Wesley, Reading (1991)

    Google Scholar 

  19. Nocedal, J., Wright, S.-J.: Numerical Optimization. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  20. Pecsvaradi, T.: Optimal horizontal guidance law for aircraft in the terminal area. IEEE Transactions on Automatic Control 17(6) (1972)

    Google Scholar 

  21. Pontryagin, L.-S., Boltyanskii, V.-G., Gamkrelidze, R.-V., Mishchenko, E.-F.: The Mathematical Theory of Optimal Processes. Pergamon Press, Oxford (1964)

    MATH  Google Scholar 

  22. Reeds, J.-A., Shepp, R.-A.: Optimal paths for a car that goes both forward and backwards. Pacific Journal of Mathematics 145(2) (1990)

    Google Scholar 

  23. Sastry, S.S., Montgomery, R.: The structure of optimal controls for a steering problem. In: IFAC Workshop on Nonlinear Control (1992)

    Google Scholar 

  24. Siciliano, B., Slotine, J.-J.-E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: 5th International Conference on Advanced Robotics, Pisa, Italy (1991)

    Google Scholar 

  25. Souères, P., Boissonnat, J.-D.: Optimal Trajectories for Nonholonomic Mobile Robots. In: Laumond, J.P. (ed.) Robot Motion Planning and Control. LNCIS, vol. 229. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  26. Souères, P., Laumond, J.-P.: Shortest path synthesis for a car-like robot. IEEE Transanctions on Automatic Control 41(5) (1996)

    Google Scholar 

  27. Sussmann, H.-J., Tang, W.: Shortest paths for reeds-shepp car: a worked out example of the use of geometric techniques in nonlinear control. Report SYCON-91-10, Rutgers University (1991)

    Google Scholar 

  28. Todorov, E.: Optimality principles in sensorimotor control. Nature Neuroscience 7(9) (2004)

    Google Scholar 

  29. Wolpert, D.-M., Ghahramani, Z.: Computational principles of movement neuroscience. Nature Neuroscience supplement 3 (2000)

    Google Scholar 

  30. Yoshikawa, T.: Analysis and control of robot manipulators with redundancy. In: Brady, M., Paul, R. (eds.) 1st. International Symposium of Robotics Research. MIT Press, Cambridge (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Laumond, J.P., Arechavaleta, G., Truong, T.V.A., Hicheur, H., Pham, Q.C., Berthoz, A. (2010). The Words of the Human Locomotion. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14743-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14742-5

  • Online ISBN: 978-3-642-14743-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics