Skip to main content

A Vision-Based System for Grasping Novel Objects in Cluttered Environments

  • Conference paper
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 66))

Summary

We present our vision-based system for grasping novel objects in cluttered environments. Our system can be divided into four components: 1) decide where to grasp an object, 2) perceive obstacles, 3) plan an obstacle-free path, and 4) follow the path to grasp the object. While most prior work assumes availability of a detailed 3-d model of the environment, our system focuses on developing algorithms that are robust to uncertainty and missing data, which is the case in real-world experiments. In this paper, we test our robotic grasping system using our STAIR (STanford AI Robots) platforms on two experiments: grasping novel objects and unloading items from a dishwasher. We also illustrate these ideas in the context of having a robot fetch an object from another room in response to a verbal request.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: ICRA (2000)

    Google Scholar 

  2. Mason, M.T., Salisbury, J.K.: Manipulator grasping and pushing operations. In: Robot Hands and the Mechanics of Manipulation. The MIT Press, Cambridge (1985)

    Google Scholar 

  3. Shimoga, K.: Robot grasp synthesis: a survey. IJRR 15, 230–266 (1996)

    Google Scholar 

  4. Okamura, A.M., Smaby, N., Cutkosky, M.R.: An overview of dexterous manipulation. In: ICRA (2000)

    Google Scholar 

  5. Saxena, A., Driemeyer, J., Kearns, J., Ng, A.Y.: Robotic grasping of novel objects. In: NIPS, vol. 19 (2006)

    Google Scholar 

  6. Saxena, A., Driemeyer, J., Kearns, J., Osondu, C., Ng, A.Y.: Learning to grasp novel objects using vision. In: ISER (2006)

    Google Scholar 

  7. Kragic, D., Christensen, H.I.: Robust visual servoing. IJRR 22, 923–939 (2003)

    Google Scholar 

  8. Piater, J.H.: Learning visual features to predict hand orientations. In: ICML Workshop on Machine Learning of Spatial Knowledge (2002)

    Google Scholar 

  9. Coelho, J., Piater, J., Grupen, R.: Developing haptic and visual perceptual categories for reaching and grasping with a humanoid robot. Robotics and Autonomous Systems 37, 195–218 (2001)

    Article  MATH  Google Scholar 

  10. Morales, A., Sanz, P.J., del Pobil, A.P.: Vision-based computation of three-finger grasps on unknown planar objects. In: IEEE/RSJ Intelligent Robots and Systems Conference (2002)

    Google Scholar 

  11. Morales, A., Sanz, P.J., del Pobil, A.P., Fagg, A.H.: An experiment in constraining vision-based finger contact selection with gripper geometry. In: IEEE/RSJ Intelligent Robots and Systems Conference (2002)

    Google Scholar 

  12. Bowers, D.L., Lumia, R.: Manipulation of unmodeled objects using intelligent grasping schemes. IEEE Trans on Fuzzy Systems 11(3) (2003)

    Google Scholar 

  13. Kamon, I., Flash, T., Edelman, S.: Learning to grasp using visual information. In: ICRA (1996)

    Google Scholar 

  14. Edsinger, A., Kemp, C.C.: Manipulation in human environments. In: IEEE/RAS Int’l Conf. on Humanoid Robotics, Humanoids 2006 (2006)

    Google Scholar 

  15. Platt, R., Grupen, R., Fagg, A.: Improving grasp skills using schema structured learning. In: ICDL (2006)

    Google Scholar 

  16. Hsiao, K., Kaelbling, L., Lozano-Perez, T.: Grasping POMDPs. In: ICRA (2007)

    Google Scholar 

  17. Simeona, T., Laumond, J., Cortes, J., Sahbani, A.: Manipulation planning with probabilistic roadmaps. IJRR (2003)

    Google Scholar 

  18. Saxena, A., Driemeyer, J., Ng, A.Y.: Learning 3-D object orientation from images. Presented in NIPS workshop on Principles of Learning Problem Design (2007)

    Google Scholar 

  19. Thrun, S., Montemerlo, M.: The graphslam algorithm with applications to large-scale mapping of urban structures. IJRR 25, 403–430 (2005)

    Google Scholar 

  20. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: NIPS, vol. 18 (2005)

    Google Scholar 

  21. Saxena, A., Schulte, J., Ng, A.Y.: Depth estimation using monocular and stereo cues. In: IJCAI (2007)

    Google Scholar 

  22. Saxena, A., Sun, M., Ng, A.Y.: Learning 3-d scene structure from a single still image. In: ICCV workshop on 3D Representation for Recognition (3dRR-07) (2007)

    Google Scholar 

  23. Saxena, A., Sun, M., Ng, A.Y.: 3-d reconstruction from sparse views using monocular vision. In: ICCV workshop on Virtual Representations and Modeling of Large-scale environments, VRML (2007)

    Google Scholar 

  24. Schwarzer, F., Saha, M., Latombe, J.-C.: Adaptive dynamic collision checking for single and multiple articulated robots in complex environments. IEEE Trans. on Robotics and Automation 21, 338–353 (2005)

    Google Scholar 

  25. Petrovskaya, A., Khatib, O., Thrun, S., Ng, A.Y.: Bayesian estimation for autonomous object manipulation based on tactile sensors. In: ICRA (2006)

    Google Scholar 

  26. Quigley, M., Berger, E., Ng, A.Y.: Stair: Hardware and software architecture. In: AAAI Robotics Workshop (2007)

    Google Scholar 

  27. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-robot and distributed sensor systems. In: ICAR (2003)

    Google Scholar 

  28. Montemerlo, M., Roy, N., Thrun, S., Haehnel, D., Stachniss, C., Glover, J.: Carmen: Robot navigation toolkit (2000), http://carmen.sourceforge.net/

  29. Microsoft, Microsoft robotics studio (2006), msdn.microsoft.com/robotics/

  30. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. In: IJRR (2008)

    Google Scholar 

  31. Gould, S., Arfvidsson, J., Kaehler, A., Sapp, B., Meissner, M., Bradski, G., Baumstarch, P., Chung, S., Ng, A.Y.: Peripheral-foveal vision for real-time object recognition and tracking in video. In: IJCAI (2007)

    Google Scholar 

  32. Krsmanovic, F., Spencer, C., Jurafsky, D., Ng, A.Y.: Have we met? MDP based speaker ID for robot dialogue. In: InterSpeech–ICSLP (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saxena, A., Wong, L., Quigley, M., Ng, A.Y. (2010). A Vision-Based System for Grasping Novel Objects in Cluttered Environments. In: Kaneko, M., Nakamura, Y. (eds) Robotics Research. Springer Tracts in Advanced Robotics, vol 66. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14743-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14743-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14742-5

  • Online ISBN: 978-3-642-14743-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics