Skip to main content

Concepts of Photoinduced Electron and Energy Transfer Processes Across Molecular Bridges

  • Chapter
  • First Online:
Testing Molecular Wires

Part of the book series: Springer Theses ((Springer Theses))

  • 506 Accesses

Abstract

As we have seen in the previous chapter individual molecules or supramolecular assemblies may perform the functions of electronic devices. Using molecular building blocks to develop electronic circuits mandates the design of specific molecular functionalities. The latter are then the inception to imitate components of an electronic circuit. One of the simplest of these components is a wire. Not surprisingly, the design of “molecular wires” has received a great deal of attention [1, 2]. Despite its simplicity, the definition of this term is rather broad. Some relate it to molecular structures mediating the transport of charge between appropriate donor and acceptor moieties. For instance, one can probe the conduction of molecular wires in break-junction experiments, placing the wire between two tiny gold-rods. In the same way of thinking, the electrodes may be replaced by appropriate donor and acceptor molecules. Generally speaking, we should employ the term “molecular wire” on any molecular structure, which mediates charges between donors and acceptors. In this work, photo- or redox-active organic molecules serve as donors and acceptors. π-conjugated bridges referred to as “molecular wires” link these acceptors and donors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For real systems, the distance dependence of the FCWD el term cannot be completely neglected due to the presence of reorganizational energy and the driving force. Thus, a correction for these influences should be done to Eq. 3.3 before applying to experimental results.

References

  1. Jortner J, Ratner M (eds) (1997) Molecular electronics. Blackwell, London

    Google Scholar 

  2. Joachim C, Gimzewski JK, Aviram A (2000) Nature 408:541

    Article  CAS  Google Scholar 

  3. Craeger S, Yu CJ, Bamad C, O’Connor S, MacLean T, Lam E, Chong Y, Olsen GT, Luo J, Gozin M, Kayyem JF (1999) J Am Chem Soc 121:1059

    Article  Google Scholar 

  4. Sachs SB, Dudek SP, Hsung RP, Sita LR, Smalley JF, Newton MD, Feldberg SW, Chidsey CED (1997) J Am Chem Soc 10:563

    Google Scholar 

  5. Sykes HD, Smalley JF, Dudek SP, Cook AR, Newton MD, Chidsey CED, Felberg SW (2001) Science Washington DC US 291:1519

    Article  Google Scholar 

  6. Donhauser ZJ, Mantooth BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW Jr., Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Science Washington DC US 292:2303

    Article  CAS  Google Scholar 

  7. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science Washington DC US 286:1550

    Article  CAS  Google Scholar 

  8. Tour JM, Rawlett AM, Kozaki M, Yao Y, Jagessar RC, Dirk SM, Price DW, Reed MA, Zhou C-W, Chen J, Wang W, Campbell I (2001) Chem Eur J 7:5118

    Google Scholar 

  9. Haag R, Rampi MA, Holmlin RE, Whitesides GM (1999) J Am Chem Soc 121:7895

    Article  CAS  Google Scholar 

  10. Holmlin EH, Ismagilov RF, Haag R, Mujica V, Ratner MA, Rampi MA, Whitesides GM (2001) Angew Chem Int Ed 40:2316

    Article  CAS  Google Scholar 

  11. Scandola F, Chiorboli C, Indelli MT, Rampi MA (2001) Covalently linked systems containing metal complexes. In: Balzani V (eds) Electron transfer in chemistry, vol III, chap. 2.1. Wiley, Weinheim, p 337

    Google Scholar 

  12. De Cola L, Belser P (2001) Photonic wires containing metal complexes. In: Balzani V (eds), Electron transfer in chemistry, vol V, chap. 3. Wiley, Weinheim, p 97

    Google Scholar 

  13. Davis WB, Svec WA, Ratner MA, Wasielewski MR (1998) Nature 396:60

    Article  CAS  Google Scholar 

  14. Marcus RA (1964) Annu Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  15. Sutin N (1983) Prog Inorg Chem 30:441

    Article  CAS  Google Scholar 

  16. Marcus RA and Sutin N (1985) Biochim Biophys Acta 811:265

    CAS  Google Scholar 

  17. Jortner J (1976) J Chem Phys 64:4860

    Article  CAS  Google Scholar 

  18. Newton MD (1991) Chem Rev Washington DC US 91:767

    CAS  Google Scholar 

  19. Ulstrup J (eds) (1979) Charge transfer processes in condensed media. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  20. Weiss EA (eds) (2005). Top Curr Chem, vol 257. Springer, Berlin, Heidelberg

    Google Scholar 

  21. Newton MD (1991) Chem Rev Washington DC US 91:767

    CAS  Google Scholar 

  22. Paddon-Row MN (2001). Covalently linked systems based on organic components. In: Balzani V (eds) Electron transfer in chemistry. vol III, chap. 2.3. Wiley, Weinheim, p 179

    Google Scholar 

  23. Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Proc Natl Acad Sci USA 95:759

    Article  Google Scholar 

  24. Oevering H, Verhoeven JW, Paddon MN-Row, Warman JM (1989) Tetrahedron 45:4751

    Article  CAS  Google Scholar 

  25. Halpern J and Orgel LE (1960) Faraday Discuss 29:32

    Article  Google Scholar 

  26. McConnell HM (1961) J. Chem. Phys., 35:508

    Article  CAS  Google Scholar 

  27. Mayoh B, and Day P (1974) Dalton Trans 8:846

    Google Scholar 

  28. Miller JR, and Beitz JV (1981) J Chem Phys 74:6746

    Article  CAS  Google Scholar 

  29. Scandola F, Argazzi R, Bignozzi CA, Chiorboli C, Indelli MT, Rampi MA (1993) Coord Chem Rev 125:283

    Article  CAS  Google Scholar 

  30. Atienza C, Martfn N, Wielopolski M, Haworth N, Clark T, Guldi DM (2006) Chem Commun Cambridge UK 30:3202

    Article  Google Scholar 

  31. Atienza-Castellanos C, Wielopolski M, Guldi DM, Pol Cvd, Bryce MR, Filippone S (2007) N Martin Chem Commun Cambridge UK 48:5164

    Article  Google Scholar 

  32. Wielopolski M, Atienza-Castellanos C, Clark T, Guldi DM, Martfn N (2008) Chem- Eur J 14:6379

    Article  CAS  Google Scholar 

  33. Meggers E, Michel-Beyerle ME, Giese B (1998) J Am Chem Soc 12:950

    Google Scholar 

  34. Atienza C, Insuasty B, Seoane C, Martfn N, Ramey J, Guldi DM (2005) J Mater Chem 15:124

    Article  CAS  Google Scholar 

  35. Lewis FD (2001) Electron transfer and charge transport processes. In: Balzani V (ed) Electron transfer in chemistry, vol III, Chap. 1.5. Wiley, Weinheim, p 105

    Google Scholar 

  36. Weiss EA, Ahrens MJ, Sinks LE, Gusev AV, Ratner MA, Wasielewsi MR (2004) J Am Chem Soc 126:5577

    Article  CAS  Google Scholar 

  37. Orlandi G, Monti S, Barigelletti F, Balzani V (1980) Chem Phys 52:313

    Article  CAS  Google Scholar 

  38. Murtaza Z, Zipp AP, World LA, Graff D, Jones WE Jr, Bates WD, Meyer TJ (1991) J Am Chem Soc 113:5113

    Article  CAS  Google Scholar 

  39. Naqvi KR and Steel C (1993) Spectrosc Lett 26:1761

    Article  CAS  Google Scholar 

  40. Balzani V, Bolletta F, Scandola F (1980) J Am Chem Soc 102:2152

    Article  CAS  Google Scholar 

  41. Lamola AA (1969) In: Lamola AA, Turro NJ (eds) Energy transfer and organic photochemistry. Wiley, New York

    Google Scholar 

  42. Turro NJ (1978) Modern molecular photochemistry. Benjamin Cummings, Menlo Park

    Google Scholar 

  43. Pol Cvd, Bryce MR, Wielopolski M, Atienza-Castellanos C, Guldi DM, Filippone S, Martfn N (2007) J Org Chem 72:6662

    Article  Google Scholar 

  44. Gnichwitz J-F, Wielopolski M, Hartnagel K, Hartnagel U, Guldi DM, Hirsch A (2008) J Am Chem Soc 130:8491

    Article  CAS  Google Scholar 

  45. Scholes GD, Ghiggino KP, Oliver AM, Paddon-Row MN (1993) J Phys Chem A 11:871

    Google Scholar 

  46. Oevering H, Verhoeven JW, Paddon-Row MN, Cotsaris E, Hush NS (1988) Chem Phys Lett 143:488

    Article  CAS  Google Scholar 

  47. Closs GL, Piotrowiak P, McInnis JM, Fleming GR (1988) J Am Chem Soc 110:2652

    Article  CAS  Google Scholar 

  48. Closs GL, Johnson MD, Miller JR, Piotrowiak P (1989) J Am Chem Soc 111:3751

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateusz Wielopolski .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wielopolski, M. (2010). Concepts of Photoinduced Electron and Energy Transfer Processes Across Molecular Bridges. In: Testing Molecular Wires. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14740-1_3

Download citation

Publish with us

Policies and ethics