Chlamydia trachomatis: Diagnostic Procedures

  • Angelika Stary
  • Georg Stary


Molecular biological technologies provide a high sensitivity and specificity for chlamydia diagnosis and are now considered to be the gold standard method for detection of Chlamydia trachomatis. Nucleic acid amplification technologies enable chlamydia diagnosis from invasive and noninvasive specimens in both men and women. The high number of asymptomatic infection and severe sequela in adolescents indicates the importance of chlamydia screening in young men and women by testing urine or vaginal samples.


Chlamydia Trachomatis Chlamydial Infection Nucleic Acid Amplification Test Chlamydia Screening Chlamydia Trachomatis Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Schachter, J., Stoner, E., Moncada, J.: Screening for chlamydial infections in women attending family planning clinics. West. J. Med. 138, 375–379 (1983)PubMedGoogle Scholar
  2. 2.
    Stamm, W., Cole, B.: Asymptomatic urethritis in men. Sex. Transm. Dis. 13, 163–165 (1986)PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, H.H., Chernesky, M., Schachter, J., et al.: Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet 345, 213–216 (1995)PubMedCrossRefGoogle Scholar
  4. 4.
    Stary, A., Tomazic-Allen, S., Choueiri, B., et al.: Comparison of DNA amplification methods for the detection of Chlamydia trachomatis in first-void urine from asymptomatic military recruits. Sex. Transm. Dis. 23, 97–102 (1996)PubMedCrossRefGoogle Scholar
  5. 5.
    Pasternack, R., et al.: Detection of Chlamydia trachomatis infections in women by Amplicor PCR: Comparison of diagnostic performance with urine and cervical specimens. J. Clin. Microbiol. 334, 995–998 (1996)Google Scholar
  6. 6.
    Van Dyck, E., Ieven, M., Pattyn, S., et al.: Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by enzyme immunoassay, culture, and three nucleic acid amplification tests. J. Clin. Microbiol. 39, 1751–1756 (2001)PubMedCrossRefGoogle Scholar
  7.  7.
    Van der Pol, B., Ferrero, D.V., Buck-Barrington, L., et al.: Multicenter evaluation of the BDProbeTec ET system for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J. Clin. Microbiol. 39, 1008–1016 (2001)CrossRefGoogle Scholar
  8. 8.
    Morre, S.A., Sillekens, P., Jacobs, M.V., et al.: RNA amplification by nucleic acid sequence-based amplification with an internal standard enables reliable detection of Chlamydia trachomatis in cervical scrapings and urine samples. J. Clin. Microbiol. 34, 3108–3114 (1996)PubMedGoogle Scholar
  9. 9.
    Ferrero, D.V., Meyers, H.N., Schultz, D.E., Willis, S.A.: Performance of the Gen-Probe Amplified Chlamydia ­trachomatis assay in detecting Chlamydia trachomatis in endocervical and urine specimens from women and urethral and urine specimens from men attending sexually transmitted disease and family planning clinics. J. Clin. Microbiol. 36, 3230–3233 (1998)PubMedGoogle Scholar
  10. 10.
    Stary, A., Schuh, E., Kerschbaumer, M., et al.: Performance of transcription-mediated amplification and ligase chain reaction assays for detection of chlamydial infection in urogenital samples obtained by invasive and noninvasive methods. J. Clin. Microbiol. 36, 2666–2670 (1998)PubMedGoogle Scholar
  11. 11.
    Stary, A., Najim, B., Lee, H.H.: Vulval swabs as alternative specimens for ligase chain reaction detection of genital chlamydial infection in women. J. Clin. Microbiol. 35, 836–838 (1997)PubMedGoogle Scholar
  12. 12.
    Pasternack, R., Vourinen, P., Pitkäjärvi, T., et al.: Comparison of manual amplicor PCR, Cobas Amplicor PCR, and LCR Assays for detection of Chlamydia trachomatis infection in women by using urine specimens. J. Clin. Microbiol. 35, 402–405 (1997)PubMedGoogle Scholar
  13. 13.
    Hook, E.W., Smith, K., Mullen, C., et al.: Diagnosis of genitourinary Chlamydia trachomatis infections using the ligase chain reaction on patient-obtained vaginal swabs. J. Clin. Microbiol. 35, 2133–2135 (1997)PubMedGoogle Scholar
  14. 14.
    Hook III, E.W., Ching, S.F., Stephens, J., et al.: Diagnosis of Neisseria gonorrhoeae infections in women by using the ligase chain reaction on patient-obtained vaginal swabs. J. Clin. Microbiol. 35, 2129–2132 (1997)PubMedGoogle Scholar
  15. 15.
    Smith, T.F., Weed, L.A.: Comparison of urethral swabs, urine, and urinary sediment for the isolation of Chlamydia. J. Clin. Microbiol. 2, 111–123 (1975)Google Scholar
  16. 16.
    Handsfield, H.H., Jasman, L.L., Roberts, P.L., et al.: Criterias for selective screening for Chlamydia trachomatis infection in women attending family planning clinics. JAMA 255, 1730–1734 (1986)PubMedCrossRefGoogle Scholar
  17. 17.
    Marrazzo, J.M., Whittington, W.L.H., Celum, C.L., Handsfield, H.H., et al.: Urine-based screening for Chlamydia trachomatis in men attending sexually transmitted disease clinics. Sex. Transm. Dis. 28, 219–225 (2001)PubMedCrossRefGoogle Scholar
  18. 18.
    Marrazzo, J.M., White, C.L., Krekeler, B., et al.: Community-based urine screening for Chlamydia trachomatis with a ligase chain reaction assays. Ann. Intern. Med. 127, 796–803 (1997)PubMedGoogle Scholar
  19. 19.
    Jones, C.A., Knaup, R.C., Hayes, M., Stoner, B.P.: Urine screening for gonococcal and chlamydial infections at ­community-based organizations in a high-morbidity area. Sex. Transm. Dis. 27, 146–151 (2000)PubMedCrossRefGoogle Scholar
  20. 20.
    Gaydos, C.A., Howell, M.R., Quinn, T., et al.: Use of ligase chain reaction with urine versus cervical culture for detection of Chlamydia trachomatis in an asymptomatic military population of pregnant and nonpregnant females attending Papanicoulaou smear clinics. J. Clin. Microbiol. 36, 1300–1304 (1998)PubMedGoogle Scholar
  21. 21.
    Jensen, I.P., Thorsen, P., Møller, B.R.: Sensitivity of ligase chain reaction assay of urine from pregnant women for Chlamydia trachomatis. Lancet 349, 329–330 (1997)PubMedCrossRefGoogle Scholar
  22. 22.
    Gift, T.L., Pate, M.S., Hook III, E.W., Kassler, W.J.: The rapid test paradox: when fewer cases detected lead to more cases treated. Sex. Transm. Dis. 26, 232–240 (1999)PubMedCrossRefGoogle Scholar
  23. 23.
    Toye, B., Peeling, R.W., Yessamine, P., Claman, P., Gemmill, I.: Diagnosis of infection in asymptomatic men and women by PCR assay. J. Clin. Microbiol. 34, 1396–1400 (1996)PubMedGoogle Scholar
  24. 24.
    Peterson, E.M., Darrow, V., Blanding, J., et al.: Reproducibility problems with the Ampliocr PCR Chlamydia trachomatis test. J. Clin. Microbiol. 35, 957–959 (1997)PubMedGoogle Scholar
  25. 25.
    Gronowsky, A.M., Copper, S., Baorto, D., Murray, P.R.: Reproducibility problems with the Abbott Laboratories LCR assay for Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 38, 2416–2418 (2000)Google Scholar
  26. 26.
    Welsh, L.A., Quinn, T., Gaydos, C.A.: Influence of endocervical specimen adequacy on PCR and direct fluorescent-antibody staining for detection of Chlamydia trachomatis infection. J. Clin. Microbiol. 35, 3078–3081 (1997)PubMedGoogle Scholar
  27. 27.
    Mahony, J., Chong, S., Jang, D., et al.: Urine specimens from pregnant and nonpregnant women inhibitory to amplification of Chlamydia trachomatis nucleic acid by PCR, ligase chain reaction, and transcription mediated amplification: identification of urinary substances associated with inhibition and removal of inhibitory activity. J. Clin. Microbiol. 36, 3122–3126 (1998)PubMedGoogle Scholar
  28. 28.
    Chernesky, M., Jang, D., Luinstra, K., Chong, S., Smieja, M., Cai, W., Hayhoe, B., Portillo, E., Macritchie, C., Main, C., Ewert, R.: High analytical sensitivity and low rates of inhibition may contribute to detection of Chlamydia trachomatis in significantly more women by the APTIMA Combo 2 assay. J. Clin. Microbiol. 44, 400–405 (2006)PubMedCrossRefGoogle Scholar
  29. 29.
    Ripa, T., Nilsson, P.A.: A Chlamydia trachomatis strain with a 377-bp deletion in the cryptic plasmid causing false-negative nucleic acid amplification tests. Sex. Transm. Dis. 34, 257 (2007)PubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Outpatients Centre for Infectious Venerodermatological DiseasesViennaAustria
  2. 2.Department of Dermatology, Division of Immunology, Allergy, and Infectious Diseases, General HospitalUniversity of ViennaViennaAustria

Personalised recommendations