Skip to main content

Dynamic Routing Algorithm for Priority Guarantee in Low Duty-Cycled Wireless Sensor Networks

  • Conference paper
Wireless Algorithms, Systems, and Applications (WASA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6221))

Abstract

It is a new challenge to provide priority-based delivery in low duty-cycled sensor networks where there are not always-awake communication paths and the wireless links are very time-varying and unreliable. In this paper, we propose a Dynamic Routing Algorithm for priority Guarantee(called DRAG) in low duty-cycled sensor networks. Both schemes of dynamic forwarding decision making and priority-based schedule are used in DRAG to achieve priority guarantee in low duty-cycled sensor networks. We evaluate DRAG via extensive simulations and the results show that DRAG can achieve good performance in delivery ratio and network delay.

This work is supported in part by the NSF China grant 60803124 and the National Basic Research Program of China(973 Program) grant 2006CB303000.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cardei, M., Thai, M.T., Li, Y., Wu, W.: Energy-efficient target coverage in wireless sensor networks. In: INFOCOM, Miami, USA (2005)

    Google Scholar 

  2. CC2420: http://www.ti.com

  3. Li, M., Liu, Y.: Underground coal mine monitoring with wireless sensor networks. ACM Trans. on Sensor Networks 5, 2 (2009)

    Google Scholar 

  4. Liu, K., Li, M., Liu, Y., et al.: Passive diagnosis for wireless sensor networks. In: SenSys, Raleigh, USA, pp. 113–126 (2008)

    Google Scholar 

  5. Culler, D., Estrin, D., Srivastava, M.: Overivew of sensor networks. IEEE Computer Magazine (2004)

    Google Scholar 

  6. Gast, M.S.: 802.11 wireless networks: the definitive guide, 2nd edn. OReilly, Southeast University Press, Nanjing (2006)

    Google Scholar 

  7. Gu, Y., He, T.: Data forwarding in extremely low-duty-cycle sensor networks with unreliable communication links. In: SenSys, Sydney, Australia, pp. 321–334 (2007)

    Google Scholar 

  8. Gu, Y., He, T., Lin, M., Xu, J.: Spatiotemporal delay control for low-duty-cycle sensor networks. In: RTSS (2009)

    Google Scholar 

  9. Guo, S., Gu, Y., Jiang, B., He, T.: Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. In: SenSys, pp. 133–144 (2009)

    Google Scholar 

  10. He, T., Stankovic, J., Lu, C., Abdelzaher, T.: Speed: a real-time routing protocol for sensor networks. In: ICDCS, USA, pp. 46–55 (2003)

    Google Scholar 

  11. Kim, E.J., Kim, M., Youm, S.K., Choi, S., Kang, C.H.: Priority-based service differentiation scheme for ieee 802.15.4 sensor networks. International Journal of Electronics and Communications 61, 69–81 (2007)

    Article  Google Scholar 

  12. Lin, S., Zhang, J., Zhou, G., Gu, L., He, T., Stankovic, J.A.: Atpc: adaptive transmission power control for wireless sensor networks. In: SenSys, pp. 223–235 (2006)

    Google Scholar 

  13. Lu, G., Sadagopan, N., Krishnamachari, B., Goel, A.: Delay efficient sleep scheduling in wireless sensor networks. In: INFOCOM, Miami, USA (2005)

    Google Scholar 

  14. Raghunathan, V., Schurgers, C., Park, S., Srivastava, M.: Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine 19, 40–51 (2002)

    Article  Google Scholar 

  15. Seada, K., Zuniga, M., Helmy, A., Krishnamachari, B.: Energy-efficient forwarding strategies for geographic routing in lossy wireless sensor networks. In: SenSys, Baltimore, USA, pp. 108–119 (2004)

    Google Scholar 

  16. Sun, Y., Gurewitz, O., Du, S., Tang, L., Johnson, D.B.: Adb: an efficient multihop broadcast protocol based on asynchronous duty-cycling in wireless sensor networks. In: SenSys, pp. 43–56 (2009)

    Google Scholar 

  17. Ye, W., Heidemann, J., Estrin, D.: Medium access control with coordination adaptive sleeping for wireless sensor networks. IEEE/ACM Trans. on Networking 12, 493–506 (2004)

    Article  Google Scholar 

  18. Ye, W., Silva, F., Heidemann, J.: Ultra-low dudty cycle mac with scheduled channel polling. In: SenSys (2006)

    Google Scholar 

  19. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer Networks 52, 2292–2330 (2008)

    Article  Google Scholar 

  20. Zuniga, M., Krishnamachari, B.: Analyzing the transmissional region in low power wireless links. In: IEEE SECON, pp. 517–526 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, G., Xu, B. (2010). Dynamic Routing Algorithm for Priority Guarantee in Low Duty-Cycled Wireless Sensor Networks. In: Pandurangan, G., Anil Kumar, V.S., Ming, G., Liu, Y., Li, Y. (eds) Wireless Algorithms, Systems, and Applications. WASA 2010. Lecture Notes in Computer Science, vol 6221. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14654-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14654-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14653-4

  • Online ISBN: 978-3-642-14654-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics