Advertisement

Cryptographic Extraction and Key Derivation: The HKDF Scheme

  • Hugo Krawczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6223)

Abstract

In spite of the central role of key derivation functions (KDF) in applied cryptography, there has been little formal work addressing the design and analysis of general multi-purpose KDFs. In practice, most KDFs (including those widely standardized) follow ad-hoc approaches that treat cryptographic hash functions as perfectly random functions. In this paper we close some gaps between theory and practice by contributing to the study and engineering of KDFs in several ways. We provide detailed rationale for the design of KDFs based on the extract-then-expand approach; we present the first general and rigorous definition of KDFs and their security that we base on the notion of computational extractors; we specify a concrete fully practical KDF based on the HMAC construction; and we provide an analysis of this construction based on the extraction and pseudorandom properties of HMAC. The resultant KDF design can support a large variety of KDF applications under suitable assumptions on the underlying hash function; particular attention and effort is devoted to minimizing these assumptions as much as possible for each usage scenario.

Beyond the theoretical interest in modeling KDFs, this work is intended to address two important and timely needs of cryptographic applications: (i) providing a single hash-based KDF design that can be standardized for use in multiple and diverse applications, and (ii) providing a conservative, yet efficient, design that exercises much care in the way it utilizes a cryptographic hash function. (The HMAC-based scheme presented here, named HKDF, is being standardized by the IETF.)

Keywords

Hash Function Random Oracle Compression Function Hash Family Pseudorandom Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adams, C., Kramer, G., Mister, S., Zuccherato, R.: On The Security of Key Derivation Functions. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 134–145. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Alexi, W., Chor, B., Goldreich, O., Schnorr, C.-P.: RSA and Rabin Functions: Certain Parts are as Hard as the Whole. SIAM J. Comput. 17(2), 194–209 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    ANSI X9.42-2001: Public Key Cryptography For The Financial Services Industry: Agreement of Symmetric Keys Using Discrete Logarithm CryptographyGoogle Scholar
  4. 4.
    ANSI X9.63-2002: Public Key Cryptography for the Financial Services Industry: Key Agreement and Key TransportGoogle Scholar
  5. 5.
    Barak, B., Halevi, S.: A model and architecture for pseudo-random generation with applications to /dev/random. In: ACM Conference on Computer and Communications Security (2005)Google Scholar
  6. 6.
    Barak, B., Shaltiel, R., Tromer, E.: True random number generators secure in a changing environment. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 166–180. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)Google Scholar
  8. 8.
    Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom Functions Revisited: The Cascade Construction and Its Concrete Security. In: Proc. 37th FOCS, pp. 514–523. IEEE, Los Alamitos (1996)Google Scholar
  9. 9.
    Bellare, M.: New Proofs for NMAC and HMAC: Security Without Collision-Resistance. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 602–619. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. JCSS 18(2) (1979)Google Scholar
  11. 11.
    Chevassut, O., Fouque, P.-A., Gaudry, P., Pointcheval, D.: The twist-aUgmented technique for key exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 410–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgard Revisited: How to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Dierks, T., Allen, C. (eds.): The TLS Protocol – Version 1. Request for Comments 2246 (1999)Google Scholar
  14. 14.
    Dodis, Y., Gennaro, R., Håstad, J., Krawczyk, H., Rabin, T.: Randomness Extraction and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Fischlin, R., Schnorr, C.-P.: Stronger Security Proofs for RSA and Rabin Bits. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 267–279. Springer, Heidelberg (1997)Google Scholar
  16. 16.
    Fouque, P.-A., Pointcheval, D., Stern, J., Zimmer, S.: Hardness of Distinguishing the MSB or LSB of Secret Keys in Diffie-Hellman Schemes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 240–251. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Gennaro, R., Krawczyk, H., Rabin, T.: Secure Hashed Diffie-Hellman over Non-DDH Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 361–381. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Goldwasser, S., Micali, S.: Probabilistic Encryption. JCSS 28(2), 270–299 (1984)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Harkins, D., Carrel, D. (eds.): The Internet Key Exchange (IKE). RFC 2409 (November 1998)Google Scholar
  20. 20.
    Hastad, J., Impagliazzo, R., Levin, L., Luby, M.: Construction of a Pseudorandom Generator from any One-way Function. SIAM. J. Computing 28(4), 1364–1396 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hastad, J., Schrift, A., Shamir, A.: The Discrete Logarithm Modulo a Composite Hides O(n) Bits. J. Comput. Syst. Sci. 47(3), 376–404 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hsiao, C.-Y., Lu, C.-J., Reyzin, L.: Conditional Computational Entropy, or Toward Separating Pseudoentropy from Compressibility. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 169–186. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    IEEE P1363A: Standard Specifications for Public Key Cryptography: Additional Techniques, Institute of Electrical and Electronics EngineersGoogle Scholar
  24. 24.
    Kaufman, C. (ed.): Internet Key Exchange (IKEv2) Protocol. RFC 4306 (December 2005)Google Scholar
  25. 25.
    Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Authentication. RFC 2104 (February 1997)Google Scholar
  26. 26.
    Krawczyk, H.: SIGMA: The ‘SiGn-and-MAc’ Approach to Authenticated Diffie-Hellman and Its Use in the IKE Protocols. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Krawczyk, H., Eronen, P.: HMAC-based Extract-and-Expand Key Derivation Function (HKDF), RFC 5869 (to appear)Google Scholar
  28. 28.
    Krawczyk, H.: Cryptographic Extraction and Key Derivation: The HKDF Scheme (full version of this paper), http://eprint.iacr.org/2010/264
  29. 29.
    Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on Reductions, and Applications to the Random Oracle Methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Nisan, N., Ta-Shma, A.: Extracting Randomness: A Survey and New Constructions. JCSS 58, 148–173 (1999)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    NIST Special Publication (SP) 800-56A, Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography (March 2006)Google Scholar
  33. 33.
    NIST Special Publication (SP) 800-108, Recommendation for Key Derivation Using Pseudorandom Functions (October 2009)Google Scholar
  34. 34.
    Patel, S., Sundaram, G.: An Efficient Discrete Log Pseudo Random Generator. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 304–317. Springer, Heidelberg (1998)Google Scholar
  35. 35.
    Radhakrishnan, J., Ta-Shma, A.: Tight bounds for depth-two superconcentrators. SIAM J. Discrete Math. 13(1), 2–24 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Renner, R., Wolf, S.: Smooth Renyi entropy and applications. In: Proceedings of IEEE International Symposium on Information Theory (2004)Google Scholar
  37. 37.
    Renner, R., Wolf, S.: Simple and tight bounds for information reconciliation and privacy amplification. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 199–216. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  38. 38.
    Shaltiel, R.: Recent developments in Extractors. Bulletin of the European Association for Theoretical Computer Science 77, 67–95 (2002), http://www.wisdom.weizmann.ac.il/~ronens/papers/survey.ps zbMATHMathSciNetGoogle Scholar
  39. 39.
    Douglas, R.: Stinson: Universal Hashing and Authentication Codes. Des. Codes Cryptography 4(4), 369–380 (1994)Google Scholar
  40. 40.
    Yao, F.F., Yin, Y.L.: Design and Analysis of Password-Based Key Derivation Functions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 245–261. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hugo Krawczyk
    • 1
  1. 1.IBM T.J. Watson Research CenterNew York

Personalised recommendations