Skip to main content

Improved Delegation of Computation Using Fully Homomorphic Encryption

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 6223)

Abstract

Following Gennaro, Gentry, and Parno (Cryptology ePrint Archive 2009/547), we use fully homomorphic encryption to design improved schemes for delegating computation. In such schemes, a delegator outsources the computation of a function F on many, dynamically chosen inputs x i to a worker in such a way that it is infeasible for the worker to make the delegator accept a result other than F(x i ). The “online stage” of the Gennaro et al. scheme is very efficient: the parties exchange two messages, the delegator runs in time poly(logT), and the worker runs in time poly(T), where T is the time complexity of F. However, the “offline stage” (which depends on the function F but not the inputs to be delegated) is inefficient: the delegator runs in time poly(T) and generates a public key of length poly(T) that needs to be accessed by the worker during the online stage.

Our first construction eliminates the large public key from the Gennaro et al. scheme. The delegator still invests poly(T) time in the offline stage, but does not need to communicate or publish anything. Our second construction reduces the work of the delegator in the offline stage to poly(logT) at the price of a 4-message (offline) interaction with a poly(T)-time worker (which need not be the same as the workers used in the online stage). Finally, we describe a “pipelined” implementation of the second construction that avoids the need to re-run the offline construction after errors are detected (assuming errors are not too frequent).

Keywords

  • verifiable computation
  • outsourcing computation
  • worst-case/average-case reductions
  • computationally sound proofs
  • universal argument systems

A full version of this paper can be found on [CKV10].

References

  1. Anderson, D.P.: Public computing: Reconnecting people to science. In: Conference on Shared Knowledge and the Web (2003)

    Google Scholar 

  2. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: GRID, pp. 4–20 (2004)

    Google Scholar 

  3. Babai, L.: Trading group theory for randomness. In: STOC, pp. 421–429 (1985)

    Google Scholar 

  4. Barak, B.: How to go beyond the black-box simulation barrier. In: FOCS, pp. 106–115 (2001)

    Google Scholar 

  5. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)

    MATH  CrossRef  MathSciNet  Google Scholar 

  6. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991)

    MATH  CrossRef  MathSciNet  Google Scholar 

  7. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: STOC, pp. 21–31 (1991)

    Google Scholar 

  8. Barak, B., Goldreich, O.: Universal arguments and their applications. In: IEEE Conference on Computational Complexity, pp. 194–203 (2002)

    Google Scholar 

  9. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. Journal of the ACM 51(4), 557–594 (2004)

    CrossRef  MathSciNet  Google Scholar 

  10. Chung, K.-M., Kalai, Y., Vadhan, S.: Improved delegation of computation using fully homomorphic encryption. Cryptology ePrint Archive, Report 2010/241 (2010), http://eprint.iacr.org/

  11. Fortnow, L., Lund, C.: Interactive proof systems and alternating time-space complexity. Theoretical Computer Science 113(1), 55–73 (1993)

    MATH  CrossRef  MathSciNet  Google Scholar 

  12. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Google Scholar 

  13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  14. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation to untrusted workers. Cryptology ePrint Archive, Report 2009/547 (2009), http://eprint.iacr.org/

  15. Goldwasser, S., Kalai, Y.T.: On the (in)security of the fiat-shamir paradigm, pp. 102–113 (2003)

    Google Scholar 

  16. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: STOC, pp. 113–122 (2008)

    Google Scholar 

  17. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. SIAM Journal on Computing 18(1), 186–208 (1989)

    MATH  CrossRef  MathSciNet  Google Scholar 

  18. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-resistant hashing. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 445–456. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  19. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: STOC, pp. 723–732 (1992)

    Google Scholar 

  20. Kalai, Y.T., Raz, R.: Probabilistically checkable arguments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 143–159. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  21. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)

    MATH  CrossRef  MathSciNet  Google Scholar 

  22. The great internet mersenne prime search, project webpag (2007), http://www.mersenne.org/

  23. Micali, S.: Cs proofs (extended abstracts). In: FOCS, pp. 436–453 (1994)

    Google Scholar 

  24. Micali, S.: Computationally sound proofs. SIAM J. Comput. 30(4), 1253–1298 (2000)

    MATH  CrossRef  MathSciNet  Google Scholar 

  25. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)

    MATH  CrossRef  MathSciNet  Google Scholar 

  26. von Ahn, L., Maurer, B., McMillen, C., Abraham, D., Blum, M.: reCAPTCHA: Human-Based Character Recognition via Web Security Measures. Science 321(5895), 1465–1468 (2008)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, KM., Kalai, Y., Vadhan, S. (2010). Improved Delegation of Computation Using Fully Homomorphic Encryption. In: Rabin, T. (eds) Advances in Cryptology – CRYPTO 2010. CRYPTO 2010. Lecture Notes in Computer Science, vol 6223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14623-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14623-7_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14622-0

  • Online ISBN: 978-3-642-14623-7

  • eBook Packages: Computer ScienceComputer Science (R0)