Efficient Chosen-Ciphertext Security via Extractable Hash Proofs

  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6223)

Abstract

We introduce the notion of an extractable hash proof system. Essentially, this is a special kind of non-interactive zero-knowledge proof of knowledge system where the secret keys may be generated in one of two modes to allow for either simulation or extraction.

  • We show how to derive efficient CCA-secure encryption schemes via extractable hash proofs in a simple and modular fashion. Our construction clarifies and generalizes the recent factoring-based cryptosystem of Hofheinz and Kiltz (Eurocrypt ’09), and is reminiscent of an approach proposed by Rackoff and Simon (Crypto ’91). We show how to instantiate extractable hash proof system for hard search problems, notably factoring and computational Diffie-Hellman. Using our framework, we obtain the first CCA-secure encryption scheme based on CDH where the public key is a constant number of group elements and a more modular and conceptually simpler variant of the Hofheinz-Kiltz cryptosystem (though less efficient).

  • We introduce adaptive trapdoor relations, a relaxation of the adaptive trapdoor functions considered by Kiltz, Mohassel and O’Neil (Eurocrypt ’10), but nonetheless imply CCA-secure encryption schemes. We show how to construct such relations using extractable hash proofs, which in turn yields realizations from hardness of factoring and CDH.

References

  1. 1.
    Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A new framework for hybrid encryption and a new analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number generators. In: CRYPTO, pp. 61–78 (1982)Google Scholar
  4. 4.
    Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: STOC, pp. 103–112 (1988)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: ACM CCS, pp. 320–329 (2005)Google Scholar
  8. 8.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Cash, D., Kiltz, E., Shoup, V.: The Twin Diffie-Hellman problem and applications. J. Cryptology 22(4), 470–504 (2009)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Hofheinz, D., Kiltz, E.: A twist on the Naor-Yung paradigm and its application to efficient CCA-secure encryption from hard search problems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 146–164. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interaction. In: FOCS, pp. 427–436 (1992)Google Scholar
  15. 15.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SICOMP 29(1), 1–28 (1999)MATHMathSciNetGoogle Scholar
  17. 17.
    Freeman, D.M., Goldreich, O., Kiltz, E., Rosen, A., Segev, G.: More constructions of lossy and correlation-secure trapdoor functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 279–295. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Gertner, Y., Malkin, T., Myers, S.: Towards a separation of semantic and CCA security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Goldreich, O.: Foundations of Cryptography: Volume II, Basic Applications. Cambridge University Press, Cambridge (2004)Google Scholar
  20. 20.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: STOC, pp. 25–32 (1989)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryption under the computational Diffie-Hellman assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key encryption from computational Diffie-Hellman in the standard model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Hofheinz, D., Kiltz, E.: Practical chosen ciphertext secure encryption from factoring. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 313–332. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Kiltz, E.: Chosen-ciphertext secure key-encapsulation based on gap hashed diffie-hellman. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 282–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Kiltz, E., Mohassel, P., O’Neil, A.: Adaptive trapdoor functions and chosen ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 673–692. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  30. 30.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  31. 31.
    Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. J. Cryptology 19(3), 359–377 (2006)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  33. 33.
    Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, pp. 607–616 (2009)Google Scholar
  34. 34.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC, pp. 427–437 (1990)Google Scholar
  35. 35.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC, pp. 333–342 (2009)Google Scholar
  36. 36.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC, pp. 187–196 (2008)Google Scholar
  37. 37.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  38. 38.
    Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  39. 39.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar
  40. 40.
    Shoup, V.: Using hash functions as a hedge against chosen ciphertext attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  41. 41.
    Vahlis, Y.: Two is a crowd? a black-box separation of one-wayness and security under correlated inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 165–182. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hoeteck Wee
    • 1
  1. 1.Queens College, CUNY 

Personalised recommendations