Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Cryptology – CRYPTO 2010
  3. Conference paper

Efficient Indifferentiable Hashing into Ordinary Elliptic Curves

  • Conference paper
  • pp 237–254
  • Cite this conference paper
Advances in Cryptology – CRYPTO 2010 (CRYPTO 2010)
Efficient Indifferentiable Hashing into Ordinary Elliptic Curves
  • Eric Brier17,
  • Jean-Sébastien Coron18,
  • Thomas Icart18,
  • David Madore19,
  • Hugues Randriam19 &
  • …
  • Mehdi Tibouchi18,20 

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6223))

Included in the following conference series:

  • Annual Cryptology Conference
  • 4935 Accesses

  • 55 Citations

  • 3 Altmetric

Abstract

We provide the first construction of a hash function into ordinary elliptic curves that is indifferentiable from a random oracle, based on Icart’s deterministic encoding from Crypto 2009. While almost as efficient as Icart’s encoding, this hash function can be plugged into any cryptosystem that requires hashing into elliptic curves, while not compromising proofs of security in the random oracle model.

We also describe a more general (but less efficient) construction that works for a large class of encodings into elliptic curves, for example the Shallue-Woestijne-Ulas (SWU) algorithm. Finally we describe the first deterministic encoding algorithm into elliptic curves in characteristic 3.

Download to read the full chapter text

Chapter PDF

Similar content being viewed by others

About Hash into Montgomery Form Elliptic Curves

Chapter © 2013

SwiftEC: Shallue-van de Woestijne Indifferentiable Function to Elliptic Curves

Chapter © 2022

The Magic of ELFs

Article 22 March 2018

References

  1. Baek, J., Zheng, Y.: Identity-based threshold decryption. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 262–276. Springer, Heidelberg (2004)

    Google Scholar 

  2. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  3. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Boyd, C., Montague, P., Nguyen, K.Q.: Elliptic curve based password authenticated key exchange protocols. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 487–501. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Boyen, X.: Multipurpose identity-based signcryption (a swiss army knife for identity-based cryptography). In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key exchange using diffie-hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient indifferentiable hashing into ordinary elliptic curves. Cryptology ePrint Archive, Report 2009/340 (2009) (full version of this paper), http://eprint.iacr.org/

  11. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)

    Article  MathSciNet  Google Scholar 

  12. Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)

    Google Scholar 

  13. Chevallier-Mames, B.: An efficient cdh-based signature scheme with a tight security reduction. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 511–526. Springer, Heidelberg (2005)

    Google Scholar 

  14. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgård revisited: How to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 430–448. Springer, Heidelberg (2005)

    Google Scholar 

  15. Farashahi, R.R., Shparlinski, I.E., Voloch, J.F.: On hashing into elliptic curves (2010) (preprint), http://www.ma.utexas.edu/users/voloch/preprint.html

  16. Fouque, P.-A., Tibouchi, M.: Estimating the size of the image of deterministic hash functions to elliptic curves. Cryptology ePrint Archive, Report 2010/037 (2010), http://eprint.iacr.org/

  17. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Jablon, D.P.: Strong password-only authenticated key exchange. SIGCOMM Comput. Commun. Rev. 26(5), 5–26 (1996)

    Article  Google Scholar 

  21. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap diffie-hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187–200. Springer, Heidelberg (2004)

    Google Scholar 

  22. Maurer, U.M., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications to the random oracle methodology. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory 39(5), 1639–1646 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mestre, J.-F.: Rang de courbe elliptiques d’invariant donné. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 314(12), 297–319 (1992)

    MathSciNet  Google Scholar 

  25. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull. Polish Acad. Sci. Math. 55(2), 97–104 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, F., Kim, K.: Id-based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Ingenico,  

    Eric Brier

  2. Université du Luxembourg,  

    Jean-Sébastien Coron, Thomas Icart & Mehdi Tibouchi

  3. TELECOM-ParisTech,  

    David Madore & Hugues Randriam

  4. École normale supérieure,  

    Mehdi Tibouchi

Authors
  1. Eric Brier
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jean-Sébastien Coron
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Thomas Icart
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. David Madore
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Hugues Randriam
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Mehdi Tibouchi
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. IBM T.J.Watson Research Center, Hawthorne, NY, USA

    Tal Rabin

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brier, E., Coron, JS., Icart, T., Madore, D., Randriam, H., Tibouchi, M. (2010). Efficient Indifferentiable Hashing into Ordinary Elliptic Curves. In: Rabin, T. (eds) Advances in Cryptology – CRYPTO 2010. CRYPTO 2010. Lecture Notes in Computer Science, vol 6223. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14623-7_13

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-642-14623-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14622-0

  • Online ISBN: 978-3-642-14623-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Publish with us

Policies and ethics

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

103.230.141.187

Not affiliated

Springer Nature

© 2024 Springer Nature